|
| 1 | +# 分发简单任务 |
| 2 | + |
| 3 | +在之前,我们已经建立好环境。下面测试一下环境,发送一个计算平方根的任务。 |
| 4 | + |
| 5 | +定义任务模块`tasks.py`。在开始,导入必须的模块。 |
| 6 | + |
| 7 | +```python |
| 8 | +from math import sqrt |
| 9 | +from celery import Celery |
| 10 | +``` |
| 11 | + |
| 12 | +然后,创建`Celery`实例,代表客户端应用: |
| 13 | + |
| 14 | +```python |
| 15 | +app = Celery('tasks', broker='redis://192.168.25.21:6379/0') |
| 16 | +``` |
| 17 | + |
| 18 | +在初始化时我们传入了模块的名称和`broker`的地址。 |
| 19 | + |
| 20 | +然后,启动`result backend`,如下: |
| 21 | + |
| 22 | +```python |
| 23 | +app.config.CELERY_RESULT_BACKEND='redis://192.168.25.21:6379/0' |
| 24 | + |
| 25 | +# 较新的版本(v5.2.7)直接填充在celery app的初始化参数中. |
| 26 | +app = Celery('tasks', broker='redis://localhost/0', backend='redis://localhost/0') |
| 27 | +``` |
| 28 | + |
| 29 | +用`@app.tack`装饰器定义任务: |
| 30 | + |
| 31 | +```python |
| 32 | +@app.task |
| 33 | +defsqrt_task(value): |
| 34 | +return sqrt(value) |
| 35 | +``` |
| 36 | + |
| 37 | +到此,我们完成了`tasks.py`模块的定义,我们需要初始化服务端的`workers`。我们创建了一个单独的目录叫做`8397_07_broker`。拷贝`tasks.py`模块到这个目录,运行如下命令: |
| 38 | + |
| 39 | +```shell |
| 40 | +$celery –A tasks worker –-loglevel=INFO |
| 41 | +``` |
| 42 | + |
| 43 | +上述命令初始化了**Clery Server**,`—A`代表`Celery`应用。下图是初始化的部分截图 |
| 44 | + |
| 45 | +```shell |
| 46 | +$# celery -A tasks worker --loglevel=INFO |
| 47 | +/opt/celery_env/lib/python3.9/site-packages/celery/platforms.py:840: SecurityWarning: You're running the worker with superuser privileges: this is |
| 48 | +absolutely not recommended! |
| 49 | +
|
| 50 | +Please specify a different user using the --uid option. |
| 51 | +
|
| 52 | +User information: uid=0 euid=0 gid=0 egid=0 |
| 53 | +
|
| 54 | + warnings.warn(SecurityWarning(ROOT_DISCOURAGED.format( |
| 55 | +
|
| 56 | + -------------- [email protected] v5.2.7 (dawn-chorus) |
| 57 | +--- ***** ----- |
| 58 | +-- ******* ---- Linux-3.10.0-957.el7.x86_64-x86_64-with-glibc2.17 2023-03-06 16:12:10 |
| 59 | +- *** --- * --- |
| 60 | +- ** ---------- [config] |
| 61 | +- ** ---------- .> app: tasks:0x7fe5cbea9b80 |
| 62 | +- ** ---------- .> transport: redis://localhost:6379/0 |
| 63 | +- ** ---------- .> results: redis://localhost/0 |
| 64 | +- *** --- * --- .> concurrency: 2 (prefork) |
| 65 | +-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker) |
| 66 | +--- ***** ----- |
| 67 | + -------------- [queues] |
| 68 | + .> celery exchange=celery(direct) key=celery |
| 69 | +
|
| 70 | +
|
| 71 | +[tasks] |
| 72 | + . tasks.square_root |
| 73 | +
|
| 74 | +[2023-03-06 16:12:10,866: INFO/MainProcess] Connected to redis://localhost:6379/0 |
| 75 | +[2023-03-06 16:12:10,871: INFO/MainProcess] mingle: searching for neighbors |
| 76 | +[2023-03-06 16:12:11,897: INFO/MainProcess] mingle: all alone |
| 77 | +[2023-03-06 16:12:11,929: INFO/MainProcess] [email protected] ready. |
| 78 | +``` |
| 79 | +
|
| 80 | +现在,**Celery Server**等待接收任务并且发送给`workers`。 |
| 81 | +
|
| 82 | +下一步就是在客户端创建应用调用`tasks`。 |
| 83 | +
|
| 84 | +!!! info "" |
| 85 | +
|
| 86 | + 上述步骤不能忽略,因为下面会用在之前创建的东西。 |
| 87 | +
|
| 88 | +在客户端机器,我们有**celery_env**虚拟环境,现在创建一个`task_dispatcher.py`模块很简单,如下步骤; |
| 89 | +
|
| 90 | +1. 导入logging模块来显示程序执行信息,导入Celery模块: |
| 91 | +
|
| 92 | + ```python |
| 93 | + import logging |
| 94 | + from celery import Celery |
| 95 | + ``` |
| 96 | +
|
| 97 | +2. 下一步是创建Celery实例,和服务端一样: |
| 98 | +
|
| 99 | + ```python |
| 100 | + #logger configuration... |
| 101 | + app = Celery('tasks', broker='redis://192.168.25.21:6379/0') |
| 102 | + app.conf.CELERY_RESULT_BACKEND = 'redis://192.168.25.21:6397/0' |
| 103 | + ``` |
| 104 | +
|
| 105 | +由于我们在接下的内容中要复用这个模块来实现任务的调用,下面我们创建一个方法来封装`sqrt_task(value)`的发送,我们将创建`manage_sqrt_task(value)`方法: |
| 106 | +
|
| 107 | +```python |
| 108 | +def manage_sqrt_task(value): |
| 109 | + result = app.send_task('tasks.sqrt_task', args=(value,)) |
| 110 | + logging.info(result.get()) |
| 111 | +``` |
| 112 | +
|
| 113 | +从上述代码我们发现客户端应用不需要知道服务端的实现。通过**Celery**类中的`send_task`方法,我们传入`module.task`格式的字符串和以元组的方式传入参数就可以调用一个任务。最后,我们看一看`log`中的结果。 |
| 114 | +在`__main__`中,我们调用了`manage_sqrt_task(value)`方法: |
| 115 | +
|
| 116 | +```python |
| 117 | +if __name__ == '__main__': |
| 118 | + manage_sqrt_task(4) |
| 119 | +``` |
| 120 | +
|
| 121 | +下面的截图是执行`task_dispatcher.py`文件的结果: |
| 122 | +
|
| 123 | +```shell |
| 124 | +[2023-03-06 16:18:45,481: INFO/MainProcess] Task tasks.sqrt_task[3ecab729-f1cb-4f29-bb47-b713b2e563ed] received |
| 125 | +[2023-03-06 16:18:45,500: INFO/ForkPoolWorker-2] Task tasks.sqrt_task[3ecab729-f1cb-4f29-bb47-b713b2e563ed] succeeded in 0.015412827953696251s: 2.0 |
| 126 | +``` |
| 127 | +
|
| 128 | +在客户端,通过`get()`方法得到结果,这是通过`send_task()`返回的`AsyncResult`实例中的重要特征。结果如下图: |
| 129 | +
|
| 130 | +```shell |
| 131 | +$# python task_dispatcher.py |
| 132 | +2023-03-06 16:26:05,841 - 2.0 |
| 133 | +``` |
| 134 | +
|
| 135 | +## 完整案例 |
| 136 | +
|
| 137 | +`tasks.py` |
| 138 | +
|
| 139 | +```python |
| 140 | +from math import sqrt |
| 141 | +from celery import Celery |
| 142 | +
|
| 143 | +app = Celery('tasks', broker='redis://localhost/0', backend='redis://localhost/0') |
| 144 | +
|
| 145 | +
|
| 146 | +@app.task |
| 147 | +def sqrt_task(value): |
| 148 | + return sqrt(value) |
| 149 | +``` |
| 150 | +
|
| 151 | +`task_dispatcher.py` |
| 152 | +
|
| 153 | +```python |
| 154 | +import logging |
| 155 | +from celery import Celery |
| 156 | +
|
| 157 | +logger = logging.getLogger() |
| 158 | +logger.setLevel(logging.DEBUG) |
| 159 | +formatter = logging.Formatter('%(asctime)s - %(message)s') |
| 160 | +
|
| 161 | +ch = logging.StreamHandler() |
| 162 | +ch.setLevel(logging.DEBUG) |
| 163 | +ch.setFormatter(formatter) |
| 164 | +logger.addHandler(ch) |
| 165 | +
|
| 166 | +app = Celery('tasks', broker='redis://localhost/0', backend='redis://localhost/0') |
| 167 | +
|
| 168 | +def manage_sqrt_task(value): |
| 169 | + result = app.send_task('tasks.sqrt_task', args=(value,)) |
| 170 | + logger.info(result.get()) |
| 171 | +
|
| 172 | +
|
| 173 | +if __name__ == '__main__': |
| 174 | + print(manage_sqrt_task(4)) |
| 175 | +``` |
0 commit comments