Skip to content

Commit b878390

Browse files
committed
Add Pascal's triangle.
1 parent f3189cc commit b878390

File tree

5 files changed

+61
-2
lines changed

5 files changed

+61
-2
lines changed

‎src/algorithms/math/pascal-triangle/README.md‎

Lines changed: 26 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Pascal's Triangle
22

33
In mathematics, **Pascal's triangle** is a triangular array of
4-
the binomial coefficients.
4+
the [binomial coefficients](https://en.wikipedia.org/wiki/Binomial_coefficient).
55

66
The rows of Pascal's triangle are conventionally enumerated
77
starting with row `n = 0` at the top (the `0th` row). The
@@ -34,6 +34,31 @@ paragraph may be written as follows:
3434
for any non-negative integer `n` and any
3535
integer `k` between `0` and `n`, inclusive.
3636

37+
![Binomial Coefficient](https://wikimedia.org/api/rest_v1/media/math/render/svg/a2457a7ef3c77831e34e06a1fe17a80b84a03181)
38+
39+
## Calculating triangle entries in O(n) time
40+
41+
We know that `i`-th entry in a line number `lineNumber` is
42+
Binomial Coefficient `C(lineNumber, i)` and all lines start
43+
with value `1`. The idea is to
44+
calculate `C(lineNumber, i)` using `C(lineNumber, i-1)`. It
45+
can be calculated in `O(1)` time using the following:
46+
47+
```
48+
C(lineNumber, i) = lineNumber! / ((lineNumber - i)! * i!)
49+
C(lineNumber, i - 1) = lineNumber! / ((lineNumber - i + 1)! * (i - 1)!)
50+
```
51+
52+
We can derive following expression from above two expressions:
53+
54+
```
55+
C(lineNumber, i) = C(lineNumber, i - 1) * (lineNumber - i + 1) / i
56+
```
57+
58+
So `C(lineNumber, i)` can be calculated
59+
from `C(lineNumber, i - 1)` in `O(1)` time.
60+
3761
## References
3862

3963
-[Wikipedia](https://en.wikipedia.org/wiki/Pascal%27s_triangle)
64+
-[GeeksForGeeks](https://www.geeksforgeeks.org/pascal-triangle/)
Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
importpascalTrianglefrom'../pascalTriangle';
2+
3+
describe('pascalTriangle',()=>{
4+
it('should calculate Pascal Triangle coefficients for specific line number',()=>{
5+
expect(pascalTriangle(0)).toEqual([1]);
6+
expect(pascalTriangle(1)).toEqual([1,1]);
7+
expect(pascalTriangle(2)).toEqual([1,2,1]);
8+
expect(pascalTriangle(3)).toEqual([1,3,3,1]);
9+
expect(pascalTriangle(4)).toEqual([1,4,6,4,1]);
10+
expect(pascalTriangle(5)).toEqual([1,5,10,10,5,1]);
11+
expect(pascalTriangle(6)).toEqual([1,6,15,20,15,6,1]);
12+
expect(pascalTriangle(7)).toEqual([1,7,21,35,35,21,7,1]);
13+
});
14+
});
Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
/**
2+
* @param{number} lineNumber - zero based.
3+
* @return{number[]}
4+
*/
5+
exportdefaultfunctionpascalTriangle(lineNumber){
6+
constcurrentLine=[1];
7+
8+
constcurrentLineSize=lineNumber+1;
9+
10+
for(letnumIndex=1;numIndex<currentLineSize;numIndex+=1){
11+
// See explanation of this formula in README.
12+
currentLine[numIndex]=currentLine[numIndex-1]*(lineNumber-numIndex+1)/numIndex;
13+
}
14+
15+
returncurrentLine;
16+
}

‎src/algorithms/math/pascal-triangle/pascalTriangleRecursive.js‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
/**
2-
* @param{number} lineNumber
2+
* @param{number} lineNumber - zero based.
33
* @return{number[]}
44
*/
55
exportdefaultfunctionpascalTriangleRecursive(lineNumber){

‎src/algorithms/sets/combinations/__test__/combineWithoutRepetitions.test.js‎

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
importcombineWithoutRepetitionsfrom'../combineWithoutRepetitions';
22
importfactorialfrom'../../../math/factorial/factorial';
3+
importpascalTrianglefrom'../../../math/pascal-triangle/pascalTriangle';
34

45
describe('combineWithoutRepetitions',()=>{
56
it('should combine string without repetitions',()=>{
@@ -56,5 +57,8 @@ describe('combineWithoutRepetitions', () =>{
5657
constexpectedNumberOfCombinations=factorial(n)/(factorial(r)*factorial(n-r));
5758

5859
expect(combinations.length).toBe(expectedNumberOfCombinations);
60+
61+
// This one is just to see one of the way of Pascal's triangle application.
62+
expect(combinations.length).toBe(pascalTriangle(n)[r]);
5963
});
6064
});

0 commit comments

Comments
(0)