Skip to content

Commit 1a089cc

Browse files
appgurueugithub-actions
andauthored
merge: Fix GetEuclidGCD (TheAlgorithms#1068)
* Fix GetEuclidGCD Implement the actual Euclidean Algorithm * Replace == with === * Lua > JS * Standard sucks * Oops * Update GetEuclidGCD.js * Updated Documentation in README.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
1 parent 7d40bb4 commit 1a089cc

File tree

2 files changed

+16
-27
lines changed

2 files changed

+16
-27
lines changed

‎DIRECTORY.md‎

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,7 @@
1818
***Cellular-Automata**
1919
*[ConwaysGameOfLife](Cellular-Automata/ConwaysGameOfLife.js)
2020
***Ciphers**
21+
*[AffineCipher](Ciphers/AffineCipher.js)
2122
*[Atbash](Ciphers/Atbash.js)
2223
*[CaesarsCipher](Ciphers/CaesarsCipher.js)
2324
*[KeyFinder](Ciphers/KeyFinder.js)

‎Maths/GetEuclidGCD.js‎

Lines changed: 15 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -1,32 +1,20 @@
1-
/*
2-
Problem statement and Explanation : https://en.wikipedia.org/wiki/Euclidean_algorithm
3-
4-
In this method, we have followed the iterative approach to first
5-
find a minimum of both numbers and go to the next step.
6-
*/
7-
81
/**
9-
* GetEuclidGCD return the gcd of two numbers using Euclidean algorithm.
10-
* @param{Number} arg1 first argument for gcd
11-
* @param{Number} arg2 second argument for gcd
12-
* @returnsreturn a `gcd` value of both number.
2+
* GetEuclidGCD Euclidean algorithm to determine the GCD of two numbers
3+
* @param{Number} a integer (may be negative)
4+
* @param{Number} b integer (may be negative)
5+
* @returns{Number} Greatest Common Divisor gcd(a, b)
136
*/
14-
constGetEuclidGCD=(arg1,arg2)=>{
15-
// firstly, check that input is a number or not.
16-
if(typeofarg1!=='number'||typeofarg2!=='number'){
17-
returnnewTypeError('Argument is not a number.')
7+
exportfunctionGetEuclidGCD(a,b){
8+
if(typeofa!=='number'||typeofb!=='number'){
9+
thrownewTypeError('Arguments must be numbers')
1810
}
19-
// check that the input number is not a negative value.
20-
if(arg1<1||arg2<1){
21-
returnnewTypeError('Argument is a negative number.')
11+
if(a===0&&b===0)returnundefined// infinitely many numbers divide 0
12+
a=Math.abs(a)
13+
b=Math.abs(b)
14+
while(b!==0){
15+
constrem=a%b
16+
a=b
17+
b=rem
2218
}
23-
// Find a minimum of both numbers.
24-
letless=arg1>arg2 ? arg2 : arg1
25-
// Iterate the number and find the gcd of the number using the above explanation.
26-
for(less;less>=2;less--){
27-
if((arg1%less===0)&&(arg2%less===0))return(less)
28-
}
29-
return(less)
19+
returna
3020
}
31-
32-
export{GetEuclidGCD}

0 commit comments

Comments
(0)