|
53 | 53 | 11.[Neural Networks - usherbrooke](http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html) |
54 | 54 | 12.[Machine Learning - Oxford](https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/) (2014-2015) |
55 | 55 | 13.[Deep Learning - Nvidia](https://developer.nvidia.com/deep-learning-courses) (2015) |
56 | | -14.[Graduate Summer School: Deep Learning, Feature Learning](https://www.youtube.com/playlist?list=PLHyI3Fbmv0SdzMHAy0aN59oYnLy5vyyTA) by Geoffrey Hinton, Yoshua Bengio, Yann LeCun, Andrew Ng, Nando de Freitas and several others @ IPAM, UCLA (2012) |
| 56 | +14.[Graduate Summer School: Deep Learning, Feature Learning](https://www.youtube.com/playlist?list=PLHyI3Fbmv0SdzMHAy0aN59oYnLy5vyyTA) by Geoffrey Hinton, Yoshua Bengio, Yann LeCun, Andrew Ng, Nando de Freitas and several others @ IPAM, UCLA (2012) |
57 | 57 | 15.[Deep Learning - Udacity/Google](https://www.udacity.com/course/deep-learning--ud730) by Vincent Vanhoucke and Arpan Chakraborty (2016) |
58 | 58 | 16.[Deep Learning - UWaterloo](https://www.youtube.com/playlist?list=PLehuLRPyt1Hyi78UOkMPWCGRxGcA9NVOE) by Prof. Ali Ghodsi at University of Waterloo (2015) |
59 | 59 | 17.[Statistical Machine Learning - CMU](https://www.youtube.com/watch?v=azaLcvuql_g&list=PLjbUi5mgii6BWEUZf7He6nowWvGne_Y8r) by Prof. Larry Wasserman |
|
97 | 97 | 4.[CMU’s list of papers](http://deeplearning.cs.cmu.edu/) |
98 | 98 | 5.[Neural Networks for Named Entity Recognition](http://nlp.stanford.edu/~socherr/pa4_ner.pdf)[zip](http://nlp.stanford.edu/~socherr/pa4-ner.zip) |
99 | 99 | 6.[Training tricks by YB](http://www.iro.umontreal.ca/~bengioy/papers/YB-tricks.pdf) |
100 | | -7.[Geoff Hinton's reading list (all papers)](http://www.cs.toronto.edu/~hinton/deeprefs.html) |
| 100 | +7.[Geoff Hinton's reading list (all papers)](http://www.cs.toronto.edu/~hinton/deeprefs.html) |
101 | 101 | 8.[Supervised Sequence Labelling with Recurrent Neural Networks](http://www.cs.toronto.edu/~graves/preprint.pdf) |
102 | 102 | 9.[Statistical Language Models based on Neural Networks](http://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf) |
103 | 103 | 10.[Training Recurrent Neural Networks](http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf) |
|
125 | 125 | 32.[Ask Me Anything: Dynamic Memory Networks for Natural Language Processing](http://arxiv.org/pdf/1506.07285v1.pdf) |
126 | 126 | 33.[Mastering the Game of Go with Deep Neural Networks and Tree Search](http://www.nature.com/nature/journal/v529/n7587/pdf/nature16961.pdf) |
127 | 127 | 34.[Batch Normalization](https://arxiv.org/abs/1502.03167) |
128 | | -36.[Residual Learning](https://arxiv.org/pdf/1512.03385v1.pdf) |
| 128 | +35.[Residual Learning](https://arxiv.org/pdf/1512.03385v1.pdf) |
| 129 | +36.[Image-to-Image Translation with Conditional Adversarial Networks] (https://arxiv.org/pdf/1611.07004v1.pdf) |
129 | 130 | 37.[Berkeley AI Research (BAIR) Laboratory] Image-to-Image Translation with Conditional Adversarial Networks (https://arxiv.org/pdf/1611.07004v1.pdf) |
130 | 131 | 38.[MobileNets by Google] (https://arxiv.org/abs/1704.04861) |
131 | 132 | 39.[Cross Audio-Visual Recognition in the Wild Using Deep Learning] (https://arxiv.org/abs/1706.05739) |
|
143 | 144 | 7.[Neural Networks for Matlab](http://uk.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf) |
144 | 145 | 8.[Using convolutional neural nets to detect facial keypoints tutorial](http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/) |
145 | 146 | 9.[Torch7 Tutorials](https://github.com/clementfarabet/ipam-tutorials/tree/master/th_tutorials) |
146 | | -10.[The Best Machine Learning Tutorials On The Web](https://github.com/josephmisiti/machine-learning-module) |
| 147 | +10.[The Best Machine Learning Tutorials On The Web](https://github.com/josephmisiti/machine-learning-module) |
147 | 148 | 11.[VGG Convolutional Neural Networks Practical](http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html) |
148 | 149 | 12.[TensorFlow tutorials](https://github.com/nlintz/TensorFlow-Tutorials) |
149 | 150 | 13.[More TensorFlow tutorials](https://github.com/pkmital/tensorflow_tutorials) |
|
450 | 451 | 40.[Paddle - PArallel Distributed Deep LEarning by Baidu](https://github.com/baidu/paddle) |
451 | 452 | 41.[NeuPy - Theano based Python library for ANN and Deep Learning](http://neupy.com) |
452 | 453 | 42.[Lasagne - a lightweight library to build and train neural networks in Theano](https://github.com/Lasagne/Lasagne) |
453 | | -43.[nolearn - wrappers and abstractions around existing neural network libraries, most notably Lasagne(https://github.com/dnouri/nolearn) |
454 | | -44.[Sonnet - a library for constructing neural networks by Google's DeepMind]https://github.com/deepmind/sonnet |
455 | | -45.[PyTorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration]https://github.com/pytorch/pytorch |
| 454 | +43.[nolearn - wrappers and abstractions around existing neural network libraries, most notably Lasagne](https://github.com/dnouri/nolearn) |
| 455 | +44.[Sonnet - a library for constructing neural networks by Google's DeepMind](https://github.com/deepmind/sonnet) |
| 456 | +45.[PyTorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration](https://github.com/pytorch/pytorch) |
456 | 457 |
|
457 | 458 |
|
458 | 459 | ### Miscellaneous |
|
465 | 466 | 6.[TorontoDeepLEarning convnet](https://github.com/TorontoDeepLearning/convnet) |
466 | 467 | 8.[gfx.js](https://github.com/clementfarabet/gfx.js) |
467 | 468 | 9.[Torch7 Cheat sheet](https://github.com/torch/torch7/wiki/Cheatsheet) |
468 | | -10.[Misc from MIT's 'Advanced Natural Language Processing' course](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-natural-language-processing-fall-2005/) |
| 469 | +10.[Misc from MIT's 'Advanced Natural Language Processing' course](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-natural-language-processing-fall-2005/) |
469 | 470 | 11.[Misc from MIT's 'Machine Learning' course](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/) |
470 | 471 | 12.[Misc from MIT's 'Networks for Learning: Regression and Classification' course](http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-520-a-networks-for-learning-regression-and-classification-spring-2001/) |
471 | 472 | 13.[Misc from MIT's 'Neural Coding and Perception of Sound' course](http://ocw.mit.edu/courses/health-sciences-and-technology/hst-723j-neural-coding-and-perception-of-sound-spring-2005/index.htm) |
472 | 473 | 14.[Implementing a Distributed Deep Learning Network over Spark](http://www.datasciencecentral.com/profiles/blogs/implementing-a-distributed-deep-learning-network-over-spark) |
473 | 474 | 15.[A chess AI that learns to play chess using deep learning.](https://github.com/erikbern/deep-pink) |
474 | | -16.[Reproducing the results of "Playing Atari with Deep Reinforcement Learning" by DeepMind](https://github.com/kristjankorjus/Replicating-DeepMind) |
| 475 | +16.[Reproducing the results of "Playing Atari with Deep Reinforcement Learning" by DeepMind](https://github.com/kristjankorjus/Replicating-DeepMind) |
475 | 476 | 17.[Wiki2Vec. Getting Word2vec vectors for entities and word from Wikipedia Dumps](https://github.com/idio/wiki2vec) |
476 | 477 | 18.[The original code from the DeepMind article + tweaks](https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner) |
477 | 478 | 19.[Google deepdream - Neural Network art](https://github.com/google/deepdream) |
|
0 commit comments