Skip to content

4AI/AnglE

Repository files navigation

It is Angle 📐, not Angel 👼.

🔥 A New SOTA Model for Semantic Textual Similarity!

https://arxiv.org/abs/2309.12871

PWCPWCPWCPWCPWCPWCPWC

📊 Click to show main results of AnglE

🤗 Pretrained Models

HFAvg.
SeanLee97/angle-llama-7b-nli-202310270.8590

💬 The model above was trained using BERT's hyperparameters. Currently, We are working on searching for even better hyperparameters for Angle-LLaMA. We plan to release more advanced pre-trained models that will further enhance performance. Stay tuned ;)😉

📝 Training Details:

1) SeanLee97/angle-llama-7b-nli-20231027

We fine-tuned AnglE-LLaMA using 4 RTX 3090 Ti (24GB), the training script is as follows:

CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 --master_port=1234 train_angle.py \ --task NLI-STS --save_dir ckpts/NLI-STS-angle-llama-7b \ --w2 35 --learning_rate 2e-4 --maxlen 45 \ --lora_r 32 --lora_alpha 32 --lora_dropout 0.1 \ --save_steps 200 --batch_size 160 --seed 42 --do_eval 0 --load_kbit 4 --gradient_accumulation_steps 4 --epochs 1 

The evaluation script is as follows:

CUDA_VISIBLE_DEVICES=0,1 python eval.py \ --load_kbit 16 \ --model_name_or_path NousResearch/Llama-2-7b-hf \ --lora_weight SeanLee97/angle-llama-7b-nli-20231027

Usage

Angle-LLaMA

  1. using transformers
fromtransformersimportAutoModelForCausalLM, AutoTokenizerfrompeftimportPeftModel, PeftConfigpeft_model_id='SeanLee97/angle-llama-7b-nli-20231027'config=PeftConfig.from_pretrained(peft_model_id) tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path) model=AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path).bfloat16().cuda() model=PeftModel.from_pretrained(model, peft_model_id).cuda() defdecorate_text(text: str): returnf'Summarize sentence "{text}" in one word:"'inputs='hello world!'tok=tokenizer([decorate_text(inputs)], return_tensors='pt') fork, vintok.items(): tok[k] =v.cuda() vec=model(output_hidden_states=True, **tok).hidden_states[-1][:, -1].float().detach().cpu().numpy() print(vec)
  1. using AnglE

Coming soon!

Angle-BERTs

Coming soon!

Train Custom AnglE Model

The training interface is still messy, we are working on making it better. Currently you can modify train_angle.py to train your own models.

Installation

1. Prepare your gpu environment

2. Install python dependencies

python -m pip install -r requirements.txt

3. Download data

Download multi_nli + snli:

$ cd data $ sh download_data.sh

Download sts datasets

$ cd SentEval/data/downstream $ bash download_dataset.sh

About

Angle-Optimized Text Embeddings

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python99.9%
  • Shell0.1%