stable
python -m pip install -U rannetlatest
python -m pip install git+https://github.com/4AI/RAN.gitenvironment
- ⭐ tensorflow>2.0,<=2.10 🤗
export TF_KERAS=1 - tensorflow>=1.14,<2.0 🤗 Keras==2.3.1
🎯 compatible with: rannet>0.2.1
| Lang | Google Drive | Baidu NetDrive |
|---|---|---|
| EN | base | base[code: udts] |
Chinese Models are still pretraining...
🎯 compatible with: rannet<=0.2.1
| Lang | Google Drive | Baidu NetDrive |
|---|---|---|
| EN | base | base[code: djkj] |
| CN | base | small | base[code: e47w] | small[code: mdmg] |
V1 models are not open.
Extract semantic feature
set return_sequences=False to extract semantic feature.
importnumpyasnpfromrannetimportRanNet, RanNetWordPieceTokenizervocab_path='pretrained/vocab.txt'ckpt_path='pretrained/model.ckpt'config_path='pretrained/config.json'tokenizer=RanNetWordPieceTokenizer(vocab_path, lowercase=True) rannet, rannet_model=RanNet.load_rannet( config_path=config_path, checkpoint_path=ckpt_path, return_sequences=False, apply_cell_transform=False, cell_pooling='mean' ) text='input text'tok=tokenizer.encode(text) vec=rannet_model.predict(np.array([tok.ids]))For the classification task
fromrannetimportRanNet, RanNetWordPieceTokenizervocab_path='pretrained/vocab.txt'ckpt_path='pretrained/model.ckpt'config_path='pretrained/config.json'tokenizer=RanNetWordPieceTokenizer(vocab_path, lowercase=True) rannet, rannet_model=RanNet.load_rannet( config_path=config_path, checkpoint_path=ckpt_path, return_sequences=False) output=rannet_model.output# (B, D)output=L.Dropout(0.1)(output) output=L.Dense(2, activation='softmax')(output) model=keras.models.Model(rannet_model.input, output) model.summary()For the sequence task
fromrannetimportRanNet, RanNetWordPieceTokenizervocab_path='pretrained/vocab.txt'ckpt_path='pretrained/model.ckpt'config_path='pretrained/config.json'tokenizer=RanNetWordPieceTokenizer(vocab_path, lowercase=True) rannet, rannet_model=RanNet.load_rannet( config_path=config_path, checkpoint_path=ckpt_path, return_cell=False) output=rannet_model.output# (B, L, D)rannet_model.summary()Embed the RAN (a Keras layer) into your network.
fromrannetimportRANran=RAN(head_num=8, head_size=256, window_size=256, min_window_size=16, activation='swish', kernel_initializer='glorot_normal', apply_lm_mask=False, apply_seq2seq_mask=False, apply_memory_review=True, dropout_rate=0.0, cell_initializer_type='zero') output, cell=ran(X)importnumpyasnpfromrannetimportRanNet, RanNetWordPieceTokenizervocab_path='pretrained/vocab.txt'ckpt_path='pretrained/model.ckpt'config_path='pretrained/config.json'tokenizer=RanNetWordPieceTokenizer(vocab_path, lowercase=True) rannet, rannet_model=RanNet.load_rannet( config_path=config_path, checkpoint_path=ckpt_path, return_sequences=False, apply_cell_transform=False, return_history=True, # return historycell_pooling='mean', with_cell=True, # with cell input ) rannet_model.summary() text='sentence 1'tok=tokenizer.encode(text) init_cell=np.zeros((1, 768)) # 768 is embedding sizevec, history=rannet_model.predict([np.array([tok.ids]), init_cell]) text2='sentence 2'tok=tokenizer.encode(text2) vec2, history=rannet_model.predict([np.array([tok.ids]), history]) # input history of sentence 1If you use our code in your research, please cite our work:
@inproceedings{li-etal-2023-recurrent, title = "Recurrent Attention Networks for Long-text Modeling", author = "Li, Xianming and Li, Zongxi and Luo, Xiaotian and Xie, Haoran and Lee, Xing and Zhao, Yingbin and Wang, Fu Lee and Li, Qing", booktitle = "Findings of the Association for Computational Linguistics: ACL 2023", month = jul, year = "2023", publisher = "Association for Computational Linguistics", pages = "3006--3019", } Please contact us at 1) for code problems, create a GitHub issue; 2) for paper problems, email [email protected]

