Skip to content

Conversation

@renovate
Copy link
Contributor

@renovaterenovatebot commented Apr 14, 2025

Note: This PR body was truncated due to platform limits.

This PR contains the following updates:

PackageChangeAgeConfidence
numpy (changelog)<2 -> <3ageconfidence

Release Notes

numpy/numpy (numpy)

v2.4.0

Compare Source

v2.3.5: 2.3.5 (Nov 16, 2025)

Compare Source

NumPy 2.3.5 Release Notes

The NumPy 2.3.5 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14.

Contributors

A total of 10 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

  • Aaron Kollasch +
  • Charles Harris
  • Joren Hammudoglu
  • Matti Picus
  • Nathan Goldbaum
  • Rafael Laboissière +
  • Sayed Awad
  • Sebastian Berg
  • Warren Weckesser
  • Yasir Ashfaq +

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #​29979: MAINT: Prepare 2.3.x for further development
  • #​30026: SIMD, BLD: Backport FPMATH mode on x86-32 and filter successor...
  • #​30029: MAINT: Backport write_release.py
  • #​30041: TYP: Various typing updates
  • #​30059: BUG: Fix np.strings.slice if stop=None or start and stop >= len...
  • #​30063: BUG: Fix np.strings.slice if start > stop
  • #​30076: BUG: avoid negating INT_MIN in PyArray_Round implementation (#​30071)
  • #​30090: BUG: Fix resize when it contains references (#​29970)
  • #​30129: BLD: update scipy-openblas, use -Dpkg_config_path (#​30049)
  • #​30130: BUG: Avoid compilation error of wrapper file generated with SWIG...
  • #​30157: BLD: use scipy-openblas 0.3.30.7 (#​30132)
  • #​30158: DOC: Remove nonexistent order parameter docs of ma.asanyarray...
  • #​30185: BUG: Fix check of PyMem_Calloc return value. (#​30176)
  • #​30217: DOC: fix links for newly rebuilt numpy-tutorials site
  • #​30218: BUG: Fix build on s390x with clang (#​30214)
  • #​30237: ENH: Make FPE blas check a runtime check for all apple arm systems

v2.3.4: (Oct 15, 2025)

Compare Source

NumPy 2.3.4 Release Notes

The NumPy 2.3.4 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14. This
release is based on Python 3.14.0 final.

Changes

The npymath and npyrandom libraries now have a .lib rather than a
.a file extension on win-arm64, for compatibility for building with MSVC and
setuptools. Please note that using these static libraries is discouraged
and for existing projects using it, it's best to use it with a matching
compiler toolchain, which is clang-cl on Windows on Arm.

(gh-29750)

Contributors

A total of 17 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

  • !DWesl
  • Charles Harris
  • Christian Barbia +
  • Evgeni Burovski
  • Joren Hammudoglu
  • Maaz +
  • Mateusz Sokół
  • Matti Picus
  • Nathan Goldbaum
  • Ralf Gommers
  • Riku Sakamoto +
  • Sandeep Gupta +
  • Sayed Awad
  • Sebastian Berg
  • Sergey Fedorov +
  • Warren Weckesser
  • dependabot[bot]
Pull requests merged

A total of 30 pull requests were merged for this release.

v2.3.3: 2.3.3 (Sep 9, 2025)

Compare Source

NumPy 2.3.3 Release Notes

The NumPy 2.3.3 release is a patch release split between a number of maintenance
updates and bug fixes. This release supports Python versions 3.11-3.14. Note
that the 3.14.0 final is currently expected in Oct, 2025. This release is based
on 3.14.0rc2.

Contributors

A total of 13 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

  • Aleksandr A. Voyt +
  • Bernard Roesler +
  • Charles Harris
  • Hunter Hogan +
  • Joren Hammudoglu
  • Maanas Arora
  • Matti Picus
  • Nathan Goldbaum
  • Raghuveer Devulapalli
  • Sanjay Kumar Sakamuri Kamalakar +
  • Tobias Markus +
  • Warren Weckesser
  • Zebreus +
Pull requests merged

A total of 23 pull requests were merged for this release.

  • #​29440: MAINT: Prepare 2.3.x for further development.
  • #​29446: BUG: Fix test_configtool_pkgconfigdir to resolve PKG_CONFIG_DIR...
  • #​29447: BLD: allow targeting webassembly without emscripten
  • #​29460: MAINT: Backport write_release.py
  • #​29473: MAINT: Bump pypa/cibuildwheel from 3.1.0 to 3.1.2
  • #​29500: BUG: Always return a real dtype from linalg.cond (gh-18304) (#​29333)
  • #​29501: MAINT: Add .file entry to all .s SVML files
  • #​29556: BUG: Casting from one timedelta64 to another didn't handle NAT.
  • #​29562: BLD: update vendored Meson to 1.8.3 [wheel build]
  • #​29563: BUG: Fix metadata not roundtripping when pickling datetime (#​29555)
  • #​29587: TST: update link and version for Intel SDE download
  • #​29593: TYP: add sorted kwarg to unique
  • #​29672: MAINT: Update pythoncapi-compat from main.
  • #​29673: MAINT: Update cibuildwheel.
  • #​29674: MAINT: Fix typo in wheels.yml
  • #​29683: BUG, BLD: Correct regex for ppc64 VSX3/VSX4 feature detection
  • #​29684: TYP: ndarray.fill() takes no keyword arguments
  • #​29685: BUG: avoid thread-unsafe refcount check in temp elision
  • #​29687: CI: replace comment-hider action in mypy_primer workflow
  • #​29689: BLD: Add missing <unordered_map> include
  • #​29691: BUG: use correct input dtype in flatiter assignment
  • #​29700: TYP: fix np.bool method declarations
  • #​29701: BUG: Correct ambiguous logic for s390x CPU feature detection

v2.3.2: (Jul 24, 2025)

Compare Source

NumPy 2.3.2 Release Notes

The NumPy 2.3.2 release is a patch release with a number of bug fixes
and maintenance updates. The highlights are:

  • Wheels for Python 3.14.0rc1
  • PyPy updated to the latest stable release
  • OpenBLAS updated to 0.3.30

This release supports Python versions 3.11-3.14

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • !DWesl
  • Charles Harris
  • Joren Hammudoglu
  • Maanas Arora
  • Marco Edward Gorelli
  • Matti Picus
  • Nathan Goldbaum
  • Sebastian Berg
  • kostayScr +

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #​29256: MAINT: Prepare 2.3.x for further development
  • #​29283: TYP: Work around a mypy issue with bool arrays (#​29248)
  • #​29284: BUG: fix fencepost error in StringDType internals
  • #​29287: BUG: handle case in mapiter where descriptors might get replaced...
  • #​29350: BUG: Fix shape error path in array-interface
  • #​29412: BUG: Allow reading non-npy files in npz and add test
  • #​29413: TST: Avoid uninitialized values in test (#​29341)
  • #​29414: BUG: Fix reference leakage for output arrays in reduction functions
  • #​29415: BUG: fix casting issue in center, ljust, rjust, and zfill (#​29369)
  • #​29416: TYP: Fix overloads in np.char.array and np.char.asarray...
  • #​29417: BUG: Any dtype should call square on arr \*\* 2 (#​29392)
  • #​29424: MAINT: use a stable pypy release in CI
  • #​29425: MAINT: Support python 314rc1
  • #​29429: MAINT: Update highway to match main.
  • #​29430: BLD: use github to build macos-arm64 wheels with OpenBLAS and...
  • #​29437: BUG: fix datetime/timedelta hash memory leak (#​29411)

Checksums

MD5
e35c637ea9fba77eabfdf70e26eaa16d numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl 3dede42d11c843cfacff422f65a80e47 numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whl f5c485a43210eb3541b254c8c9d6ac9e numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl 658950eb37e19b42920635ee60830a1d numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl 9a864a280798829cc522521bc5d9c7e2 numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl 085e1ff7746d327a1320672ab86966c3 numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 6acefa06c38bc616352b76174d4f19d2 numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl 4dd3469970dbfba60dad41b9923c5a5a numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whl ad090139b8b872a9157b92c840566c5e numpy-2.3.2-cp311-cp311-win32.whl 09b023f808432e60633e36a13630dc13 numpy-2.3.2-cp311-cp311-win_amd64.whl c80f2a1c4c829ccb6745a6d0803b7177 numpy-2.3.2-cp311-cp311-win_arm64.whl 307fc28e0c630dbc5a6ff4051ee9ec6c numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl 4af1ffb81bdec235aef1b9bdf7c1566d numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl 8003e8df1badaffee163a603bf05656b numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whl e703fab1c371fd27389401caa34a5cbd numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl 5fdc228f15ec5de78b89c7aa4c137019 numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl f3bc10b89911c09777c4c5d9752f35b0 numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 5d0128aa0f6aa3a5122364a727a72eba numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl ef392070c44709321d7f87ab15bbd674 numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl 909e05dcd1164cc02d5fccc1cc6c9ca6 numpy-2.3.2-cp312-cp312-win32.whl 3ba0b657682fc54d9433b4d7244c9264 numpy-2.3.2-cp312-cp312-win_amd64.whl 05755e8c591b1ac2fff05a06d76ac414 numpy-2.3.2-cp312-cp312-win_arm64.whl c1e323fa1986bc99ae96c46126a30f93 numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl 9a89327ef3550581017ea6e2a47c1a8e numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl 3c7236116911c5c19de0091d7ac81f65 numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl 1809c7adafae6492741864cf4dda7d1e numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whl ee68f94ec5f9c0c7f9423d7329bc085e numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl 24c4e95f0a615356787e2920378e5c6f numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 5c53a2c915d177b7c305c0386ba21b43 numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl c4607ea441320a0078d942ca21ef2411 numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl 09f2fdeb35d952751ba269ca5fa77e7a numpy-2.3.2-cp313-cp313-win32.whl 47a7326544ce192df844b3e9750c7704 numpy-2.3.2-cp313-cp313-win_amd64.whl 9b5adab8ee4eb97ccf90d73d63671db4 numpy-2.3.2-cp313-cp313-win_arm64.whl 7169baf4160b9a75790650cef23a73e1 numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl 0338f2a78981d84d84e5f693ed6112d5 numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl b0c1c28add9716f7cee433d53fb43067 numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whl d2d8d43c535184095550420169858b90 numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl 745bb6930958f4d7980cd705621abc25 numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl 96412f8c9687d468e260aacdfb9cca02 numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 11ce971fe997bf5c0784516db85891ff numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl e71ba272e9db74bc753ca056e76fdf5b numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl 82feb6822f2cf04a9edf38cf7f7d4806 numpy-2.3.2-cp313-cp313t-win32.whl c6c8a1a2e94a9fc2dad9d161a6666e54 numpy-2.3.2-cp313-cp313t-win_amd64.whl 29e65f132c4a916214a0e82bca214717 numpy-2.3.2-cp313-cp313t-win_arm64.whl 2b99d343001495b182027843bf2148b2 numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl 40d04ac18cd9db3c380224d3d5607770 numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl 871631874c6839719d1c1b3ad81835cd numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl 4d4098888f19de85dd18646c2f955cd2 numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl 813e47e3c07cd28bf0458a1e513d6619 numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl 1fe080566baca813e6ac4635011a408a numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl bd44ab38b53a4b5b6130b6f01ffaf5fa numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whl f2fda217bec39ede344b42fef2cbd9e5 numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whl c02218de0d0666769c91513eafaf251f numpy-2.3.2-cp314-cp314-win32.whl d419eb806a6f5debb366d4bcf0f5bde0 numpy-2.3.2-cp314-cp314-win_amd64.whl 851529ffdf2b0d4b66eb1ac99c24da3e numpy-2.3.2-cp314-cp314-win_arm64.whl 2306e8b73fcd2d46116c6a95034e4d3a numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whl b4d4ce3339cb9f0b0f2b339db803f39c numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl 6ae336ac461d5d89811c8a236b442842 numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl 351f35dd00bfb35e6cad2447a14c7cdf numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl 0e0b26b34024f24a5f59809a1778ace0 numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl bc77a7f5826bb0a38154d31d8444abb7 numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl cd1e335e2a8437339475db12ee30f26d numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl 5c8093e713bd7e5f8512458d53fefeed numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl 66125a7e4e311fc2dedfa8c25ee577f2 numpy-2.3.2-cp314-cp314t-win32.whl 97713f41a5d4a08e8ed3d629d07678d3 numpy-2.3.2-cp314-cp314t-win_amd64.whl 848c4c409b643c2b42c431f51b310095 numpy-2.3.2-cp314-cp314t-win_arm64.whl e240eed2fc098f7a0ae9813abead8a05 numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl 7e46ebe46530596019ae6b5db8a7a564 numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl 82077182e608a0d366eba700902463b5 numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl 67db17064907cd22a74676b50de1ab6d numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl 6d59903ecd732d53dd230ca59cdc2c34 numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl baae8d6875e1de409ffef875896c4b4f numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 5d92d6c39f2f0b28149ed15437b13cf7 numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whl f8d3d3b3ecd2b6e98889e88f6bbdc1a3 numpy-2.3.2.tar.gz 
SHA256
852ae5bed3478b92f093e30f785c98e0cb62fa0a939ed057c31716e18a7a22b9 numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl 7a0e27186e781a69959d0230dd9909b5e26024f8da10683bd6344baea1885168 numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whl f0a1a8476ad77a228e41619af2fa9505cf69df928e9aaa165746584ea17fed2b numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl cbc95b3813920145032412f7e33d12080f11dc776262df1712e1638207dde9e8 numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl f75018be4980a7324edc5930fe39aa391d5734531b1926968605416ff58c332d numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl 20b8200721840f5621b7bd03f8dcd78de33ec522fc40dc2641aa09537df010c3 numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 1f91e5c028504660d606340a084db4b216567ded1056ea2b4be4f9d10b67197f numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl fb1752a3bb9a3ad2d6b090b88a9a0ae1cd6f004ef95f75825e2f382c183b2097 numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whl 4ae6863868aaee2f57503c7a5052b3a2807cf7a3914475e637a0ecd366ced220 numpy-2.3.2-cp311-cp311-win32.whl 240259d6564f1c65424bcd10f435145a7644a65a6811cfc3201c4a429ba79170 numpy-2.3.2-cp311-cp311-win_amd64.whl 4209f874d45f921bde2cff1ffcd8a3695f545ad2ffbef6d3d3c6768162efab89 numpy-2.3.2-cp311-cp311-win_arm64.whl bc3186bea41fae9d8e90c2b4fb5f0a1f5a690682da79b92574d63f56b529080b numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl 2f4f0215edb189048a3c03bd5b19345bdfa7b45a7a6f72ae5945d2a28272727f numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl 8b1224a734cd509f70816455c3cffe13a4f599b1bf7130f913ba0e2c0b2006c0 numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whl 3dcf02866b977a38ba3ec10215220609ab9667378a9e2150615673f3ffd6c73b numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl 572d5512df5470f50ada8d1972c5f1082d9a0b7aa5944db8084077570cf98370 numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl 8145dd6d10df13c559d1e4314df29695613575183fa2e2d11fac4c208c8a1f73 numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 103ea7063fa624af04a791c39f97070bf93b96d7af7eb23530cd087dc8dbe9dc numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl fc927d7f289d14f5e037be917539620603294454130b6de200091e23d27dc9be numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl d95f59afe7f808c103be692175008bab926b59309ade3e6d25009e9a171f7036 numpy-2.3.2-cp312-cp312-win32.whl 9e196ade2400c0c737d93465327d1ae7c06c7cb8a1756121ebf54b06ca183c7f numpy-2.3.2-cp312-cp312-win_amd64.whl ee807923782faaf60d0d7331f5e86da7d5e3079e28b291973c545476c2b00d07 numpy-2.3.2-cp312-cp312-win_arm64.whl c8d9727f5316a256425892b043736d63e89ed15bbfe6556c5ff4d9d4448ff3b3 numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl efc81393f25f14d11c9d161e46e6ee348637c0a1e8a54bf9dedc472a3fae993b numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl dd937f088a2df683cbb79dda9a772b62a3e5a8a7e76690612c2737f38c6ef1b6 numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl 11e58218c0c46c80509186e460d79fbdc9ca1eb8d8aee39d8f2dc768eb781089 numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whl 5ad4ebcb683a1f99f4f392cc522ee20a18b2bb12a2c1c42c3d48d5a1adc9d3d2 numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl 938065908d1d869c7d75d8ec45f735a034771c6ea07088867f713d1cd3bbbe4f numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 66459dccc65d8ec98cc7df61307b64bf9e08101f9598755d42d8ae65d9a7a6ee numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl a7af9ed2aa9ec5950daf05bb11abc4076a108bd3c7db9aa7251d5f107079b6a6 numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl 906a30249315f9c8e17b085cc5f87d3f369b35fedd0051d4a84686967bdbbd0b numpy-2.3.2-cp313-cp313-win32.whl c63d95dc9d67b676e9108fe0d2182987ccb0f11933c1e8959f42fa0da8d4fa56 numpy-2.3.2-cp313-cp313-win_amd64.whl b05a89f2fb84d21235f93de47129dd4f11c16f64c87c33f5e284e6a3a54e43f2 numpy-2.3.2-cp313-cp313-win_arm64.whl 4e6ecfeddfa83b02318f4d84acf15fbdbf9ded18e46989a15a8b6995dfbf85ab numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl 508b0eada3eded10a3b55725b40806a4b855961040180028f52580c4729916a2 numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl 754d6755d9a7588bdc6ac47dc4ee97867271b17cee39cb87aef079574366db0a numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whl a9f66e7d2b2d7712410d3bc5684149040ef5f19856f20277cd17ea83e5006286 numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl de6ea4e5a65d5a90c7d286ddff2b87f3f4ad61faa3db8dabe936b34c2275b6f8 numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl a3ef07ec8cbc8fc9e369c8dcd52019510c12da4de81367d8b20bc692aa07573a numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 27c9f90e7481275c7800dc9c24b7cc40ace3fdb970ae4d21eaff983a32f70c91 numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl 07b62978075b67eee4065b166d000d457c82a1efe726cce608b9db9dd66a73a5 numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl c771cfac34a4f2c0de8e8c97312d07d64fd8f8ed45bc9f5726a7e947270152b5 numpy-2.3.2-cp313-cp313t-win32.whl 72dbebb2dcc8305c431b2836bcc66af967df91be793d63a24e3d9b741374c450 numpy-2.3.2-cp313-cp313t-win_amd64.whl 72c6df2267e926a6d5286b0a6d556ebe49eae261062059317837fda12ddf0c1a numpy-2.3.2-cp313-cp313t-win_arm64.whl 448a66d052d0cf14ce9865d159bfc403282c9bc7bb2a31b03cc18b651eca8b1a numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl 546aaf78e81b4081b2eba1d105c3b34064783027a06b3ab20b6eba21fb64132b numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl 87c930d52f45df092f7578889711a0768094debf73cfcde105e2d66954358125 numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl 8dc082ea901a62edb8f59713c6a7e28a85daddcb67454c839de57656478f5b19 numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl af58de8745f7fa9ca1c0c7c943616c6fe28e75d0c81f5c295810e3c83b5be92f numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl fed5527c4cf10f16c6d0b6bee1f89958bccb0ad2522c8cadc2efd318bcd545f5 numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 095737ed986e00393ec18ec0b21b47c22889ae4b0cd2d5e88342e08b01141f58 numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whl b5e40e80299607f597e1a8a247ff8d71d79c5b52baa11cc1cce30aa92d2da6e0 numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whl 7d6e390423cc1f76e1b8108c9b6889d20a7a1f59d9a60cac4a050fa734d6c1e2 numpy-2.3.2-cp314-cp314-win32.whl b9d0878b21e3918d76d2209c924ebb272340da1fb51abc00f986c258cd5e957b numpy-2.3.2-cp314-cp314-win_amd64.whl 2738534837c6a1d0c39340a190177d7d66fdf432894f469728da901f8f6dc910 numpy-2.3.2-cp314-cp314-win_arm64.whl 4d002ecf7c9b53240be3bb69d80f86ddbd34078bae04d87be81c1f58466f264e numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whl 293b2192c6bcce487dbc6326de5853787f870aeb6c43f8f9c6496db5b1781e45 numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl 0a4f2021a6da53a0d580d6ef5db29947025ae8b35b3250141805ea9a32bbe86b numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl 9c144440db4bf3bb6372d2c3e49834cc0ff7bb4c24975ab33e01199e645416f2 numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl f92d6c2a8535dc4fe4419562294ff957f83a16ebdec66df0805e473ffaad8bd0 numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl cefc2219baa48e468e3db7e706305fcd0c095534a192a08f31e98d83a7d45fb0 numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 76c3e9501ceb50b2ff3824c3589d5d1ab4ac857b0ee3f8f49629d0de55ecf7c2 numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl 122bf5ed9a0221b3419672493878ba4967121514b1d7d4656a7580cd11dddcbf numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl 6f1ae3dcb840edccc45af496f312528c15b1f79ac318169d094e85e4bb35fdf1 numpy-2.3.2-cp314-cp314t-win32.whl 087ffc25890d89a43536f75c5fe8770922008758e8eeeef61733957041ed2f9b numpy-2.3.2-cp314-cp314t-win_amd64.whl 092aeb3449833ea9c0bf0089d70c29ae480685dd2377ec9cdbbb620257f84631 numpy-2.3.2-cp314-cp314t-win_arm64.whl 14a91ebac98813a49bc6aa1a0dfc09513dcec1d97eaf31ca21a87221a1cdcb15 numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl 71669b5daae692189540cffc4c439468d35a3f84f0c88b078ecd94337f6cb0ec numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl 69779198d9caee6e547adb933941ed7520f896fd9656834c300bdf4dd8642712 numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl 2c3271cc4097beb5a60f010bcc1cc204b300bb3eafb4399376418a83a1c6373c numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl 8446acd11fe3dc1830568c941d44449fd5cb83068e5c70bd5a470d323d448296 numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl aa098a5ab53fa407fded5870865c6275a5cd4101cfdef8d6fafc48286a96e981 numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl 6936aff90dda378c09bea075af0d9c675fe3a977a9d2402f95a87f440f59f619 numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whl e0486a11ec30cdecb53f184d496d1c6a20786c81e55e41640270130056f8ee48 numpy-2.3.2.tar.gz 

v2.3.1: (Jun 21, 2025)

Compare Source

NumPy 2.3.1 Release Notes

The NumPy 2.3.1 release is a patch release with several bug fixes,
annotation improvements, and better support for OpenBSD. Highlights are:

  • Fix bug in matmul for non-contiguous out kwarg parameter
  • Fix for Accelerate runtime warnings on M4 hardware
  • Fix new in NumPy 2.3.0 np.vectorize casting errors
  • Improved support of cpu features for FreeBSD and OpenBSD

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Brad Smith +
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • François Rozet
  • Joren Hammudoglu
  • Matti Picus
  • Mugundan Selvanayagam
  • Nathan Goldbaum
  • Sebastian Berg
Pull requests merged

A total of 12 pull requests were merged for this release.

Checksums
MD5
c353ac75ea083594a6cb674b5f943d83 numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl fdb5454e372d399cf570868ea7e2b192 numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl dc0f17823bb1826519d6974c2b95fa90 numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl 7e3118fe383af697a8868ba191b9eac0 numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl 705aafad1250aa3e41502c5710a26ed5 numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl 003d6268344577b804205098e11cdaa0 numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl 7d0c0fd11c573c510a25dd7513e4ae0a numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl d99f993ef05966ead99df736df18b521 numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl 96933cac225fb8b60a9cc2c0efa14d36 numpy-2.3.1-cp311-cp311-win32.whl f777712419f3dd586ac294ddce84b274 numpy-2.3.1-cp311-cp311-win_amd64.whl 1fe2615669de5c271a48b99356fa3528 numpy-2.3.1-cp311-cp311-win_arm64.whl fccca48846d41d38966cc75395787f79 numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl fa389e78db43f3c2841ce127c1205422 numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl 2554944d786abd284db4a699d4edfe1e numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl 7fec491834803a8ffa3765ef3d03cea5 numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl 7c2d8b4412f12b9b02e98349fb5cd760 numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl 94dcc636a2f2478666d820e21fc91682 numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl 404128939d89d1ea26be105fb03b5028 numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl e89d8d460060e8315c3ba68b2b649db0 numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl a767bd10267ad6baef9655fb08db3fd3 numpy-2.3.1-cp312-cp312-win32.whl f753b957fcb7f06f043cf9c6114f294c numpy-2.3.1-cp312-cp312-win_amd64.whl 58ffa7c69587f9bf8f6025794fec7f63 numpy-2.3.1-cp312-cp312-win_arm64.whl 22a2a9a568dd0866b288ad8bd8bb3e90 numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl 5e1593fcc8bb3447e995622f2dca017b numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl 894d56072db9358e0096538710a1a8ce numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl 593cb311f5170cbcfcefb587cdcc70bb numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl 22935447e75acda4075c57b332c0236a numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl 5aa2040f947204e15e95ec87461a7e91 numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl 6516337f0347974fada21a23a818be64 numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl ec956eb37b874b1ec52d6ffccda6ef65 numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl 0aaed62cb1bae9c1b1a44d1a4eda2db7 numpy-2.3.1-cp313-cp313-win32.whl 57829996fc12f649547f0258443bbb20 numpy-2.3.1-cp313-cp313-win_amd64.whl a0d0dd68bbf0ab378142b2daff0a8e06 numpy-2.3.1-cp313-cp313-win_arm64.whl b22dc66970a8017e4d0ce83ef8c938af numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl 93c17afb38cf8fd876ca2bd9ea7e9612 numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl 283064dabb434f3dbc1a5e2514b9cb29 numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl 5b8c778033c98b4a0ce6e5bfc7625f05 numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl 2340bd78962f194bcdbee6531d954acc numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl 43a92ad37dc68d719bdeeeb65b3f4d2f numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl eb110c4aa0d73558187397ddfba179ad numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl 1f7f0076411ed4afa9c4553eb06564cb numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl 30f30dde6f806070b2164e48a632a350 numpy-2.3.1-cp313-cp313t-win32.whl 2375e2f2a5b75c5f5c908af6bb85d639 numpy-2.3.1-cp313-cp313t-win_amd64.whl b421530a87bb8e9e3d4dc34c75d5d953 numpy-2.3.1-cp313-cp313t-win_arm64.whl b1bc3cbf9cd407964b2bb25dfe86ca3d numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl 4c2e234eb4f346f362d6e6c620fa7a56 numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl 98ec3c19a365d0ae926113bb349e323b numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl e0c7bcd526cde46489d5a8f12e06cc77 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl 41f535aa1f1acaf3d8a32a462a4cd4c8 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl 2abf906a6688c98693045cbbc655d5b7 numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl 886559a4c541298b37245e389ce8bf10 numpy-2.3.1.tar.gz 
SHA256
6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070 numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl 5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl 0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl e344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl 467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl afed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl 0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93 numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl a5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115 numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl a8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369 numpy-2.3.1-cp311-cp311-win32.whl d4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff numpy-2.3.1-cp311-cp311-win_amd64.whl ec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a numpy-2.3.1-cp311-cp311-win_arm64.whl 2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl 762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29 numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl 867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl 4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943 numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl 8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25 numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl e7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660 numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl 5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952 numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl ee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77 numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl e772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab numpy-2.3.1-cp312-cp312-win32.whl cfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76 numpy-2.3.1-cp312-cp312-win_amd64.whl 7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30 numpy-2.3.1-cp312-cp312-win_arm64.whl 25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8 numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl 7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0 numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl 18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1 numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl 5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1 numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl 36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0 numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8 numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl 39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8 numpy-2.3.1-cp313-cp313-win32.whl 8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42 numpy-2.3.1-cp313-cp313-win_amd64.whl 0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e numpy-2.3.1-cp313-cp313-win_arm64.whl b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8 numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl 2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992 numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl 23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48 numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl 010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280 numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl 6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e numpy-2.3.1-cp313-cp313t-win32.whl 2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc numpy-2.3.1-cp313-cp313t-win_amd64.whl eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244 numpy-2.3.1-cp313-cp313t-win_arm64.whl ad506d4b09e684394c42c966ec1527f6ebc25da7f4da4b1b056606ffe446b8a3 numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl ebb8603d45bc86bbd5edb0d63e52c5fd9e7945d3a503b77e486bd88dde67a19b numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl 15aa4c392ac396e2ad3d0a2680c0f0dee420f9fed14eef09bdb9450ee6dcb7b7 numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl c6e0bf9d1a2f50d2b65a7cf56db37c095af17b59f6c132396f7c6d5dd76484df numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl eabd7e8740d494ce2b4ea0ff05afa1b7b291e978c0ae075487c51e8bd93c0c68 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl e610832418a2bc09d974cc9fecebfa51e9532d6190223bc5ef6a7402ebf3b5cb numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl 1ec9ae20a4226da374362cca3c62cd753faf2f951440b0e3b98e93c235441d2b numpy-2.3.1.tar.gz 

v2.3.0: (June 7, 2025)

Compare Source

NumPy 2.3.0 Release Notes

The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations, code
modernizations, and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.

Users running on a Mac having an M4 cpu might see various warnings about
invalid values and such. The warnings are a known problem with
Accelerate. They are annoying, but otherwise harmless. Apple promises to
fix them.

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Highlights
  • Interactive examples in the NumPy documentation.
  • Building NumPy with OpenMP Parallelization.
  • Preliminary support for Windows on ARM.
  • Improved support for free threaded Python.
  • Improved annotations.
New functions
New function numpy.strings.slice

The new function numpy.strings.slice was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.

(gh-27789)

Deprecations
  • The numpy.typing.mypy_plugin has been deprecated in favor of
    platform-agnostic static type inference. Please remove
    numpy.typing.mypy_plugin from the plugins section of your mypy
    configuration. If this change results in new errors being reported,
    kindly open an issue.

    (gh-28129)

  • The numpy.typing.NBitBase type has been deprecated and will be
    removed in a future version.

    This type was previously intended to be used as a generic upper
    bound for type-parameters, for example:

    importnumpyasnpimportnumpy.typingasnptdeff[NT: npt.NBitBase](x: np.complexfloating[NT]) ->np.floating[NT]: ...

    But in NumPy 2.2.0, float64 and complex128 were changed to
    concrete subtypes, causing static type-checkers to reject
    x: np.float64 = f(np.complex128(42j)).

    So instead, the better approach is to use typing.overload:

    importnumpyasnpfromtypingimportoverload @&#8203;overloaddeff(x: np.complex64) ->np.float32: ... @&#8203;overloaddeff(x: np.complex128) ->np.float64: ... @&#8203;overloaddeff(x: np.clongdouble) ->np.longdouble: ...

    (gh-28884)

Expired deprecations
  • Remove deprecated macros like NPY_OWNDATA from Cython interfaces
    in favor of NPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Remove numpy/npy_1_7_deprecated_api.h and C macros like
    NPY_OWNDATA in favor of NPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Remove alias generate_divbyzero_error to
    npy_set_floatstatus_divbyzero and generate_overflow_error to
    npy_set_floatstatus_overflow (deprecated since 1.10)

    (gh-28254)

  • Remove np.tostring (deprecated since 1.19)

    (gh-28254)

  • Raise on np.conjugate of non-numeric types (deprecated since 1.13)

    (gh-28254)

  • Raise when using np.bincount(...minlength=None), use 0 instead
    (deprecated since 1.14)

    (gh-28254)

  • Passing shape=None to functions with a non-optional shape argument
    errors, use () instead (deprecated since 1.20)

    (gh-28254)

  • Inexact matches for mode and searchside raise (deprecated since
    1.20)

    (gh-28254)

  • Setting __array_finalize__ = None errors (deprecated since 1.23)

    (gh-28254)

  • np.fromfile and np.fromstring error on bad data, previously they
    would guess (deprecated since 1.18)

    (gh-28254)

  • datetime64 and timedelta64 construction with a tuple no longer
    accepts an event value, either use a two-tuple of (unit, num) or a
    4-tuple of (unit, num, den, 1) (deprecated since 1.14)

    (gh-28254)

  • When constructing a dtype from a class with a dtype attribute,
    that attribute must be a dtype-instance rather than a thing that can
    be parsed as a dtype instance (deprecated in 1.19). At some point
    the whole construct of using a dtype attribute will be deprecated
    (see #​25306)

    (gh-28254)

  • Passing booleans as partition index errors (deprecated since 1.23)

    (gh-28254)

  • Out-of-bounds indexes error even on empty arrays (deprecated since
    1.20)

    (gh-28254)

  • np.tostring has been removed, use tobytes instead (deprecated
    since 1.19)

    (gh-28254)

  • Disallow make a non-writeable array writeable for arrays with a base
    that do not own their data (deprecated since 1.17)

    (gh-28254)

  • concatenate() with axis=None uses same-kind casting by
    default, not unsafe (deprecated since 1.20)

    (gh-28254)

  • Unpickling a scalar with object dtype errors (deprecated since 1.20)

    (gh-28254)

  • The binary mode of fromstring now errors, use frombuffer instead
    (deprecated since 1.14)

    (gh-28254)

  • Converting np.inexact or np.floating to a dtype errors
    (deprecated since 1.19)

    (gh-28254)

  • Converting np.complex, np.integer, np.signedinteger,
    np.unsignedinteger, np.generic to a dtype errors (deprecated
    since 1.19)

    (gh-28254)

  • The Python built-in round errors for complex scalars. Use
    np.round or scalar.round instead (deprecated since 1.19)

    (gh-28254)

  • 'np.bool' scalars can no longer be interpreted as an index
    (deprecated since 1.19)

    (gh-28254)

  • Parsing an integer via a float string is no longer supported.
    (deprecated since 1.23) To avoid this error you can

    • make sure the original data is stored as integers.
    • use the converters=float keyword argument.
    • Use np.loadtxt(...).astype(np.int64)

    (gh-28254)

  • The use of a length 1 tuple for the ufunc signature errors. Use
    dtype or fill the tuple with None (deprecated since 1.19)

    (gh-28254)

  • Special handling of matrix is in np.outer is removed. Convert to a
    ndarray via matrix.A (deprecated since 1.20)

    (gh-28254)

  • Removed the np.compat package source code (removed in 2.0)

    (gh-28961)

C API changes
  • NpyIter_GetTransferFlags is now available to check if the iterator
    needs the Python API or if casts may cause floating point errors
    (FPE). FPEs can for example be set when casting float64(1e300) to
    float32 (overflow to infinity) or a NaN to an integer (invalid
    value).

    (gh-27883)

  • NpyIter now has no limit on the number of operands it supports.

    (gh-28080)

New NpyIter_GetTransferFlags and NpyIter_IterationNeedsAPI change

NumPy now has the new NpyIter_GetTransferFlags function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.

The NpyIter_IterationNeedsAPI function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.

(gh-27998)

New Features
  • The type parameter of np.dtype now defaults to typing.Any. This
    way, static type-checkers will infer dtype: np.dtype as
    dtype: np.dtype[Any], without reporting an error.

    (gh-28669)

  • Static type-checkers now interpret:

    • _: np.ndarray as _: npt.NDArray[typing.Any].
    • _: np.flatiter as _: np.flatiter[np.ndarray].

    This is because their type parameters now have default values.

    (gh-28940)

NumPy now registers its pkg-config paths with the pkgconf PyPI package

The pkgconf PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path. This means that
when using pkgconf
from PyPI, NumPy will be discoverable without needing for any custom
environment configuration.

[!NOTE]
This only applies when using the pkgconf package from PyPI,
or put another way, this only applies when installing pkgconf via a
Python package manager.

If you are using pkg-config or pkgconf provided by your system,
or any other source that does not use the pkgconf-pypi
project, the NumPy pkg-config directory will not be automatically added
to the search path. In these situations, you might want to use numpy-config.

(gh-28214)

Allow out=... in ufuncs to ensure array result

NumPy has the sometimes difficult behavior that it currently usually
returns scalars rather than 0-D arrays (even if the inputs were 0-D
arrays). This is especially problematic for non-numerical dtypes (e.g.
object).

For ufuncs (i.e. most simple math functions) it is now possible to use
out=... (literally `...`, e.g. out=Ellipsis) which is identical
in behavior to out not being passed, but will ensure a non-scalar
return. This spelling is borrowed from arr1d[0, ...] where the ...
also ensures a non-scalar return.

Other functions with an out= kwarg should gain support eventually.
Downstream libraries that interoperate via __array_ufunc__ or
__array_function__ may need to adapt to support this.

(gh-28576)

Building NumPy with OpenMP Parallelization

NumPy now supports OpenMP parallel processing capabilities when built
with the -Denable_openmp=true Meson build flag. This feature is
disabled by default. When enabled, np.sort and np.argsort functions
can utilize OpenMP for parallel thread execution, improving performance
for these operations.

(gh-28619)

Interactive examples in the NumPy documentation

The NumPy documentation includes a number of examples that can now be
run interactively in your browser using WebAssembly and Pyodide.

Please note that the examples are currently experimental in nature and
may not work as expected for all methods in the public API.

(gh-26745)

Improvements
  • Scalar comparisons between non-comparable dtypes such as
    np.array(1) == np.array('s') now return a NumPy bool instead of a
    Python bool.

    ([gh-27288](https://redirect.github.com/num


Configuration

📅 Schedule: Branch creation - "after 7am and before 4pm on monday" in timezone Europe/London, Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@codecov
Copy link

codecovbot commented Apr 14, 2025

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 30.31%. Comparing base (8bd267a) to head (b1e56bd).
Report is 1 commits behind head on main.

Additional details and impacted files
@@ Coverage Diff @@## main #574 +/- ## ========================================== + Coverage 30.24% 30.31% +0.07%  ========================================== Files 80 80 Lines 10496 10573 +77 Branches 1401 1426 +25 ========================================== + Hits 3174 3205 +31 - Misses 7217 7260 +43 - Partials 105 108 +3 
🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.

@renovaterenovatebotforce-pushed the renovate/numpy-2.x branch from b1e56bd to ecbd8e3CompareNovember 20, 2025 18:39
@renovaterenovatebot changed the title Update dependency numpy to v2Update dependency numpy to v2 - autoclosedNov 27, 2025
@renovaterenovatebot closed this Nov 27, 2025
@renovaterenovatebot deleted the renovate/numpy-2.x branch November 27, 2025 06:07
@renovaterenovatebot changed the title Update dependency numpy to v2 - autoclosedUpdate dependency numpy to v2Dec 1, 2025
@renovaterenovatebot reopened this Dec 1, 2025
@renovaterenovatebotforce-pushed the renovate/numpy-2.x branch from 22e8934 to ecbd8e3CompareDecember 1, 2025 12:35
@renovaterenovatebotforce-pushed the renovate/numpy-2.x branch from ecbd8e3 to f545b17CompareDecember 22, 2025 16:49
Sign up for freeto join this conversation on GitHub. Already have an account? Sign in to comment

Labels

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant