This code is the official PyTorch implementation of Low-Dimensional Hyperbolic Knowledge Graph Embeddings [6] as well as multiple state-of-the-art KG embedding models which can be trained for the link prediction task. A Tensorflow implementation is also available at: https://github.com/tensorflow/neural-structured-learning/tree/master/research/kg_hyp_emb
This implementation includes the following models:
- Complex [1]
- Complex-N3 [2]
- RotatE (without self-adversarial sampling) [3]
- CTDecomp [2]
- TransE [4]
- MurE [5]
- RotE [6]
- RefE [6]
- AttE [6]
- RotH [6]
- RefH [6]
- AttH [6]
First, create a python 3.7 environment and install dependencies:
virtualenv -p python3.7 hyp_kg_env source hyp_kg_env/bin/activate pip install -r requirements.txtThen, set environment variables and activate your environment:
source set_env.shDownload and pre-process the datasets:
source datasets/download.sh python datasets/process.pyTo train and evaluate a KG embedding model for the link prediction task, use the run.py script:
usage: run.py [-h] [--dataset{FB15K,WN,WN18RR,FB237,YAGO3-10}] [--model{TransE,CP,MurE,RotE,RefE,AttE,RotH,RefH,AttH,ComplEx,RotatE}] [--regularizer{N3,N2}] [--reg REG] [--optimizer{Adagrad,Adam,SGD,SparseAdam,RSGD,RAdam}] [--max_epochs MAX_EPOCHS] [--patience PATIENCE] [--valid VALID] [--rank RANK] [--batch_size BATCH_SIZE] [--neg_sample_size NEG_SAMPLE_SIZE] [--dropout DROPOUT] [--init_size INIT_SIZE] [--learning_rate LEARNING_RATE] [--gamma GAMMA] [--bias{constant,learn,none}] [--dtype{single,double}] [--double_neg] [--debug] [--multi_c] Knowledge Graph Embedding optional arguments: -h, --help show this help message and exit --dataset{FB15K,WN,WN18RR,FB237,YAGO3-10} Knowledge Graph dataset --model{TransE,CP,MurE,RotE,RefE,AttE,RotH,RefH,AttH,ComplEx,RotatE} Knowledge Graph embedding model --regularizer{N3,N2} Regularizer --reg REG Regularization weight --optimizer{Adagrad,Adam,SparseAdam} Optimizer --max_epochs MAX_EPOCHS Maximum number of epochs to train for --patience PATIENCE Number of epochs before early stopping --valid VALID Number of epochs before validation --rank RANK Embedding dimension --batch_size BATCH_SIZE Batch size --neg_sample_size NEG_SAMPLE_SIZE Negative sample size, -1 to not use negative sampling --dropout DROPOUT Dropout rate --init_size INIT_SIZE Initial embeddings' scale --learning_rate LEARNING_RATE Learning rate --gamma GAMMA Margin for distance-based losses --bias{constant,learn,none} Bias type (none for no bias) --dtype{single,double} Machine precision --double_neg Whether to negative sample both head and tail entities --debug Only use 1000 examples for debugging --multi_c Multiple curvatures per relationWe provide example scripts with hyper-parameters for WN18RR in the examples/ folder. For dimensions 32 and 500, these models should achieve the following test MRRs:
| model | rank | MRR | H@10 |
|---|---|---|---|
| ComplEx-N3 | 32 | .407 | .449 |
| ComplEx-N3 | 500 | .477 | .572 |
| RotE | 32 | .455 | .527 |
| RotE | 500 | .494 | .587 |
| RotH | 32 | .473 | .551 |
| RotH | 500 | .489 | .581 |
To add a new (complex/hyperbolic/Euclidean) Knowledge Graph embedding model, implement the corresponding query embedding under models/, e.g.:
def get_queries(self, queries): head_e = self.entity(queries[:, 0]) rel_e = self.rel(queries[:, 1]) lhs_e = ### Do something here ### lhs_biases = self.bh(queries[:, 0]) return lhs_e, lhs_biases If you use the codes, please cite the following paper [6]:
@inproceedings{chami2020low, title={Low-Dimensional Hyperbolic Knowledge Graph Embeddings}, author={Chami, Ines and Wolf, Adva and Juan, Da-Cheng and Sala, Frederic and Ravi, Sujith and R{\'e}, Christopher}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, pages={6901--6914}, year={2020} } [1] Trouillon, Théo, et al. "Complex embeddings for simple link prediction." International Conference on Machine Learning. 2016.
[2] Lacroix, Timothee, et al. "Canonical Tensor Decomposition for Knowledge Base Completion." International Conference on Machine Learning. 2018.
[3] Sun, Zhiqing, et al. "Rotate: Knowledge graph embedding by relational rotation in complex space." International Conference on Learning Representations. 2019.
[4] Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." Advances in neural information processing systems. 2013.
[5] Balažević, Ivana, et al. "Multi-relational Poincaré Graph Embeddings." Advances in neural information processing systems. 2019.
[6] Chami, Ines, et al. "Low-Dimensional Hyperbolic Knowledge Graph Embeddings." Annual Meeting of the Association for Computational Linguistics. 2020.
Some of the code was forked from the original ComplEx-N3 implementation which can be found at: https://github.com/facebookresearch/kbc