Skip to content

🛁 Clean Code concepts adapted for Python

License

Notifications You must be signed in to change notification settings

as209099/clean-code-python

Repository files navigation

乾淨程式碼-python

Build Status

內容列表

  1. Introduction 前言
  2. Variables 變數
  3. Functions 函式
  4. Classes 類別
    1. S: Single Responsibility Principle (SRP) 單一功能原則
    2. O: Open/Closed Principle (OCP) 開閉原則
    3. L: Liskov Substitution Principle (LSP) 里氏替換原則
    4. I: Interface Segregation Principle (ISP) 介面隔離原則
    5. D: Dependency Inversion Principle (DIP) 依賴反轉原則
  5. Don't repeat yourself (DRY) 別再重複做一次
  6. Translation 翻譯

Introduction 前言

軟體工程原理,來自Robert C. Martin的《 Clean Code 乾淨原始碼》書中, 且適用於Python。這並不是一個風格指南。這是一個指南用於幫助你產出更易讀、更易用,和更易重構的Python軟體。

並非每一個原理都必需嚴格遵守,甚至部分的原理並不是那麼普遍地被大家認同。這只是指南而已,但他們都由《Clean Code 乾淨程式碼》的作者 多年來的經驗搜集並編撰而成。

啟發自 clean-code-javascript

使用 Python 3.7+版本

Variables 變數

使用有意義且可發音的變數名稱

不恰當:

importdatetimeymdstr=datetime.date.today().strftime("%y-%m-%d")

此外,變數名稱沒必要加入它自己本身的型態名稱(str)

恰當:

importdatetimecurrent_date: str=datetime.date.today().strftime("%y-%m-%d")

⬆ 返回頂部

對於相同類型的變數,使用相同單字

不恰當: 這是我們對於相同意思的實體,所使用的三種不同單字名稱

defget_user_info(): passdefget_client_data(): passdefget_customer_record(): pass

恰當:

如果是相同的實體,你應該在函式裡持續地使用相同的名稱

defget_user_info(): passdefget_user_data(): passdefget_user_record(): pass

這樣更好 Python同時也是個物件導向程式語言。如果這樣做是合乎情理,可以將這些函式(functions)和實體實作的程式碼打包在一起,例如:實體屬性、屬性方法(property methods),或是方法:

fromtypingimportUnion, DictclassRecord: passclassUser: info : str@propertydefdata(self) ->Dict[str, str]: return{} defget_record(self) ->Union[Record, None]: returnRecord()

⬆ 返回頂部

使用易查詢的名字

我們讀到的程式碼將會比此生寫過的還要更多,寫出易讀且易查詢的程式碼是非常重要的。 如果不命名變數,會使想瞭解我們專案的讀者感到毫無意義,會傷害到我們的讀者。 讓你的變數名字更易於查詢。

不恰當:

importtime# What is the number 86400 for again?time.sleep(86400)

恰當:

importtime# Declare them in the global namespace for the module.SECONDS_IN_A_DAY=60*60*24time.sleep(SECONDS_IN_A_DAY)

⬆ 返回頂部

使用帶有解釋性意義的變數

不恰當:

importreaddress="One Infinite Loop, Cupertino 95014"city_zip_code_regex=r"^[^,\\]+[,\\\s]+(.+?)\s*(\d{5})?$"matches=re.match(city_zip_code_regex, address) ifmatches: print(f"{matches[1]}: {matches[2]}")

還不錯:

這算是還不錯,但我們在regex上仍然有很重的依賴性

importreaddress="One Infinite Loop, Cupertino 95014"city_zip_code_regex=r"^[^,\\]+[,\\\s]+(.+?)\s*(\d{5})?$"matches=re.match(city_zip_code_regex, address) ifmatches: city, zip_code=matches.groups() print(f"{city}: {zip_code}")

恰當:

將小型的行為模式透過命名方式降低整體依賴性

importreaddress="One Infinite Loop, Cupertino 95014"city_zip_code_regex=r"^[^,\\]+[,\\\s]+(?P<city>.+?)\s*(?P<zip_code>\d{5})?$"matches=re.match(city_zip_code_regex, address) ifmatches: print(f"{matches['city']}, {matches['zip_code']}")

⬆ 返回頂部

避免心理地圖

不要強迫閱讀你的程式碼的人自行去解讀變數名稱的意思 明確表達永遠比含糊的好很多

不恰當:

seq= ("Austin", "New York", "San Francisco") foriteminseq: #do_stuff()#do_some_other_stuff()# Wait, what's `item` again?print(item)

恰當:

locations= ("Austin", "New York", "San Francisco") forlocationinlocations: #do_stuff()#do_some_other_stuff()# ...print(location)

⬆ 返回頂部

別加入不需要的內容

如果你的類別(class)或物件(object)已經表示什麼含意,就別在你的變數名稱中重複表達相同含義

不恰當:

classCar: car_make: strcar_model: strcar_color: str

恰當:

classCar: make: strmodel: strcolor: str

⬆ 返回頂部

使用預設的參數(arguments),別用簡短的邏輯(circuiting)表達或條件(conditionals)表達

小技巧

如何寫:

importhashlibdefcreate_micro_brewery(name): name="Hipster Brew Co."ifnameisNoneelsenameslug=hashlib.sha1(name.encode()).hexdigest() # etc.

... 什麼時機你可以使用預設參數(default argument)代替? 當你期望將一個字串(string)視為參數(argument)時, 這會使整體意思更清晰。

恰當:

importhashlibdefcreate_micro_brewery(name: str="Hipster Brew Co."): slug=hashlib.sha1(name.encode()).hexdigest() # etc.

⬆ 返回頂部

Functions 函式

函式參數(2個或更少較為理想)

限制函數的參數數量是極為重要的,因為它會使你測試自己的函式更為方便。 使用三個以上參數的爆炸組合會讓你必須測試一大堆不同的測試案例與不同參數。

最佳的案例是沒有參數。一個或兩個參數算是還可以,然後三個參數就應該避免。 除此之外,如果再更多的參數就應該合併起來。通常,如果你使用三個以上的參數, 代表你的函式嘗試做太多事情了。在沒有其他替代方案情況下,大多數使用一個高層級的物件(higher-level object) 作為參數就足以滿足情況。

不恰當:

defcreate_menu(title, body, button_text, cancellable): pass

Java-風格:

classMenu: def__init__(self, config: dict): self.title=config["title"] self.body=config["body"] # ...menu=Menu({"title": "My Menu", "body": "Something about my menu", "button_text": "OK", "cancellable": False } )

這也不錯

classMenuConfig: """A configuration for the Menu. Attributes: title: The title of the Menu. body: The body of the Menu. button_text: The text for the button label. cancellable: Can it be cancelled? """title: strbody: strbutton_text: strcancellable: bool=Falsedefcreate_menu(config: MenuConfig) ->None: title=config.titlebody=config.body# ...config=MenuConfig() config.title="My delicious menu"config.body="A description of the various items on the menu"config.button_text="Order now!"# The instance attribute overrides the default class attribute.config.cancellable=Truecreate_menu(config)

優等

fromtypingimportNamedTupleclassMenuConfig(NamedTuple): """A configuration for the Menu. Attributes: title: The title of the Menu. body: The body of the Menu. button_text: The text for the button label. cancellable: Can it be cancelled? """title: strbody: strbutton_text: strcancellable: bool=Falsedefcreate_menu(config: MenuConfig): title, body, button_text, cancellable=config# ...create_menu( MenuConfig( title="My delicious menu", body="A description of the various items on the menu", button_text="Order now!" ) )

更高級

fromdataclassesimportastuple, dataclass@dataclassclassMenuConfig: """A configuration for the Menu. Attributes: title: The title of the Menu. body: The body of the Menu. button_text: The text for the button label. cancellable: Can it be cancelled? """title: strbody: strbutton_text: strcancellable: bool=Falsedefcreate_menu(config: MenuConfig): title, body, button_text, cancellable=astuple(config) # ...create_menu( MenuConfig( title="My delicious menu", body="A description of the various items on the menu", button_text="Order now!" ) )

**超高級用法,限定 Python3.8+ **

fromtypingimportTypedDictclassMenuConfig(TypedDict): """A configuration for the Menu. Attributes: title: The title of the Menu. body: The body of the Menu. button_text: The text for the button label. cancellable: Can it be cancelled? """title: strbody: strbutton_text: strcancellable: booldefcreate_menu(config: MenuConfig): title=config["title"] # ...create_menu( # You need to supply all the parametersMenuConfig( title="My delicious menu", body="A description of the various items on the menu", button_text="Order now!", cancellable=True ) )

⬆ 返回頂部

Functions should do one thing

This is by far the most important rule in software engineering. When functions do more than one thing, they are harder to compose, test, and reason about. When you can isolate a function to just one action, they can be refactored easily and your code will read much cleaner. If you take nothing else away from this guide other than this, you'll be ahead of many developers.

Bad:

fromtypingimportListclassClient: active: booldefemail(client: Client) ->None: passdefemail_clients(clients: List[Client]) ->None: """Filter active clients and send them an email. """forclientinclients: ifclient.active: email(client)

Good:

fromtypingimportListclassClient: active: booldefemail(client: Client) ->None: passdefget_active_clients(clients: List[Client]) ->List[Client]: """Filter active clients. """return [clientforclientinclientsifclient.active] defemail_clients(clients: List[Client]) ->None: """Send an email to a given list of clients. """forclientinget_active_clients(clients): email(client)

Do you see an opportunity for using generators now?

Even better

fromtypingimportGenerator, IteratorclassClient: active: booldefemail(client: Client): passdefactive_clients(clients: Iterator[Client]) ->Generator[Client, None, None]: """Only active clients"""return (clientforclientinclientsifclient.active) defemail_client(clients: Iterator[Client]) ->None: """Send an email to a given list of clients. """forclientinactive_clients(clients): email(client)

⬆ back to top

Function names should say what they do

Bad:

classEmail: defhandle(self) ->None: passmessage=Email() # What is this supposed to do again?message.handle()

Good:

classEmail: defsend(self) ->None: """Send this message"""message=Email() message.send()

⬆ back to top

Functions should only be one level of abstraction

When you have more than one level of abstraction, your function is usually doing too much. Splitting up functions leads to reusability and easier testing.

Bad:

# type: ignoredefparse_better_js_alternative(code: str) ->None: regexes= [ # ... ] statements=code.split('\n') tokens= [] forregexinregexes: forstatementinstatements: passast= [] fortokenintokens: passfornodeinast: pass

Good:

fromtypingimportTuple, List, DictREGEXES: Tuple= ( # ... ) defparse_better_js_alternative(code: str) ->None: tokens: List=tokenize(code) syntax_tree: List=parse(tokens) fornodeinsyntax_tree: passdeftokenize(code: str) ->List: statements=code.split() tokens: List[Dict] = [] forregexinREGEXES: forstatementinstatements: passreturntokensdefparse(tokens: List) ->List: syntax_tree: List[Dict] = [] fortokenintokens: passreturnsyntax_tree

⬆ back to top

Don't use flags as function parameters

Flags tell your user that this function does more than one thing. Functions should do one thing. Split your functions if they are following different code paths based on a boolean.

Bad:

fromtempfileimportgettempdirfrompathlibimportPathdefcreate_file(name: str, temp: bool) ->None: iftemp: (Path(gettempdir()) /name).touch() else: Path(name).touch()

Good:

fromtempfileimportgettempdirfrompathlibimportPathdefcreate_file(name: str) ->None: Path(name).touch() defcreate_temp_file(name: str) ->None: (Path(gettempdir()) /name).touch()

⬆ back to top

Avoid side effects

A function produces a side effect if it does anything other than take a value in and return another value or values. For example, a side effect could be writing to a file, modifying some global variable, or accidentally wiring all your money to a stranger.

Now, you do need to have side effects in a program on occasion - for example, like in the previous example, you might need to write to a file. In these cases, you should centralize and indicate where you are incorporating side effects. Don't have several functions and classes that write to a particular file - rather, have one (and only one) service that does it.

The main point is to avoid common pitfalls like sharing state between objects without any structure, using mutable data types that can be written to by anything, or using an instance of a class, and not centralizing where your side effects occur. If you can do this, you will be happier than the vast majority of other programmers.

Bad:

# type: ignore# This is a module-level name.# It's good practice to define these as immutable values, such as a string.# However...fullname="Ryan McDermott"defsplit_into_first_and_last_name() ->None: # The use of the global keyword here is changing the meaning of the# the following line. This function is now mutating the module-level# state and introducing a side-effect!globalfullnamefullname=fullname.split() split_into_first_and_last_name() # MyPy will spot the problem, complaining about 'Incompatible types in# assignment: (expression has type "List[str]", variable has type "str")'print(fullname) # ["Ryan", "McDermott"]# OK. It worked the first time, but what will happen if we call the# function again?

Good:

fromtypingimportList, AnyStrdefsplit_into_first_and_last_name(name: AnyStr) ->List[AnyStr]: returnname.split() fullname="Ryan McDermott"name, surname=split_into_first_and_last_name(fullname) print(name, surname) # => Ryan McDermott

Also good

fromdataclassesimportdataclass@dataclassclassPerson: name: str@propertydefname_as_first_and_last(self) ->list: returnself.name.split() # The reason why we create instances of classes is to manage state!person=Person("Ryan McDermott") print(person.name) # => "Ryan McDermott"print(person.name_as_first_and_last) # => ["Ryan", "McDermott"]

⬆ back to top

Classes 類別

Single Responsibility Principle (SRP) 單一功能原則

Robert C. Martin writes:

A class should have only one reason to change.

"Reasons to change" are, in essence, the responsibilities managed by a class or function.

In the following example, we create an HTML element that represents a comment with the version of the document:

Bad

fromimportlibimportmetadataclassVersionCommentElement: """An element that renders an HTML comment with the program's version number """defget_version(self) ->str: """Get the package version"""returnmetadata.version("pip") defrender(self) ->None: print(f'<!-- Version: {self.get_version()} -->') VersionCommentElement().render()

This class has two responsibilities:

  • Retrieve the version number of the Python package
  • Render itself as an HTML element

Any change to one or the other carries the risk of impacting the other.

We can rewrite the class and decouple these responsibilities:

Good

fromimportlibimportmetadatadefget_version(pkg_name:str) ->str: """Retrieve the version of a given package"""returnmetadata.version(pkg_name) classVersionCommentElement: """An element that renders an HTML comment with the program's version number """def__init__(self, version: str): self.version=versiondefrender(self) ->None: print(f'<!-- Version: {self.version} -->') VersionCommentElement(get_version("pip")).render()

The result is that the class only needs to take care of rendering itself. It receives the version text during instantiation and this text is generated by calling a separate function, get_version(). Changing the class has no impact on the other, and vice-versa, as long as the contract between them does not change, i.e. the function provides a string and the class __init__ method accepts a string.

As an added bonus, the get_version() is now reusable elsewhere.

Open/Closed Principle (OCP) 開閉原則

“Incorporate new features by extending the system, not by making modifications (to it)”, Uncle Bob.

Objects should be open for extension, but closed to modification. It should be possible to augment the functionality provided by an object (for example, a class) without changing its internal contracts. An object can enable this when it is designed to be extended cleanly.

In the following example, we try to implement a simple web framework that handles HTTP requests and returns responses. The View class has a single method .get() that will be called when the HTTP server will receive a GET request from a client.

View is intentionally simple and returns text/plain responses. We would also like to return HTML responses based on a template file, so we subclass it using the TemplateView class.

Bad

fromdataclassesimportdataclass@dataclassclassResponse: """An HTTP response"""status: intcontent_type: strbody: strclassView: """A simple view that returns plain text responses"""defget(self, request) ->Response: """Handle a GET request and return a message in the response"""returnResponse( status=200, content_type='text/plain', body="Welcome to my web site" ) classTemplateView(View): """A view that returns HTML responses based on a template file."""defget(self, request) ->Response: """Handle a GET request and return an HTML document in the response"""withopen("index.html") asfd: returnResponse( status=200, content_type='text/html', body=fd.read() )

The TemplateView class has modified the internal behaviour of its parent class in order to enable the more advanced functionality. In doing so, it now relies on the View to not change the implementation of the .get() method, which now needs to be frozen in time. We cannot introduce, for example, some additional checks in all our View-derived classes because the behaviour is overridden in at least one subtype and we will need to update it.

Let's redesign our classes to fix this problem and let the View class be extended (not modified) cleanly:

Good

fromdataclassesimportdataclass@dataclassclassResponse: """An HTTP response"""status: intcontent_type: strbody: strclassView: """A simple view that returns plain text responses"""content_type="text/plain"defrender_body(self) ->str: """Render the message body of the response"""return"Welcome to my web site"defget(self, request) ->Response: """Handle a GET request and return a message in the response"""returnResponse( status=200, content_type=self.content_type, body=self.render_body() ) classTemplateView(View): """A view that returns HTML responses based on a template file."""content_type="text/html"template_file="index.html"defrender_body(self) ->str: """Render the message body as HTML"""withopen(self.template_file) asfd: returnfd.read() 

Note that we did need to override the render_body() in order to change the source of the body, but this method has a single, well defined responsibility that invites subtypes to override it. It is designed to be extended by its subtypes.

Another good way to use the strengths of both object inheritance and object composition is to use Mixins.

Mixins are bare-bones classes that are meant to be used exclusively with other related classes. They are "mixed-in" with the target class using multiple inheritance, in order to change the target's behaviour.

A few rules:

  • Mixins should always inherit from object
  • Mixins always come before the target class, e.g. class Foo(MixinA, MixinB, TargetClass): ...

Also good

fromdataclassesimportdataclass, fieldfromtypingimportProtocol@dataclassclassResponse: """An HTTP response"""status: intcontent_type: strbody: strheaders: dict=field(default_factory=dict) classView: """A simple view that returns plain text responses"""content_type="text/plain"defrender_body(self) ->str: """Render the message body of the response"""return"Welcome to my web site"defget(self, request) ->Response: """Handle a GET request and return a message in the response"""returnResponse( status=200, content_type=self.content_type, body=self.render_body() ) classTemplateRenderMixin: """A mixin class for views that render HTML documents using a template file Not to be used by itself! """template_file: str=""defrender_body(self) ->str: """Render the message body as HTML"""ifnotself.template_file: raiseValueError("The path to a template file must be given.") withopen(self.template_file) asfd: returnfd.read() classContentLengthMixin: """A mixin class for views that injects a Content-Length header in the response Not to be used by itself! """defget(self, request) ->Response: """Introspect and amend the response to inject the new header"""response=super().get(request) # type: ignoreresponse.headers['Content-Length'] =len(response.body) returnresponseclassTemplateView(TemplateRenderMixin, ContentLengthMixin, View): """A view that returns HTML responses based on a template file."""content_type="text/html"template_file="index.html"

As you can see, Mixins make object composition easier by packaging together related functionality into a highly reusable class with a single responsibility, allowing clean decoupling. Class extension is achieved by "mixing-in" the additional classes.

The popular Django project makes heavy use of Mixins to compose its class-based views.

FIXME: re-enable typechecking for the line above once it's clear how to use typing.Protocol to make the type checker work with Mixins.

Liskov Substitution Principle (LSP) 里氏替換原則

“Functions that use pointers or references to base classes must be able to use objects of derived classes without knowing it”, Uncle Bob.

This principle is named after Barbara Liskov, who collaborated with fellow computer scientist Jeannette Wing on the seminal paper *"A behavioral notion of subtyping" (1994). A core tenet of the paper is that "a subtype (must) preserve the behaviour of the supertype methods and also all invariant and history properties of its supertype".

In essence, a function accepting a supertype should also accept all its subtypes with no modification.

Can you spot the problem with the following code?

Bad

fromdataclassesimportdataclass@dataclassclassResponse: """An HTTP response"""status: intcontent_type: strbody: strclassView: """A simple view that returns plain text responses"""content_type="text/plain"defrender_body(self) ->str: """Render the message body of the response"""return"Welcome to my web site"defget(self, request) ->Response: """Handle a GET request and return a message in the response"""returnResponse( status=200, content_type=self.content_type, body=self.render_body() ) classTemplateView(View): """A view that returns HTML responses based on a template file."""content_type="text/html"defget(self, request, template_file: str) ->Response: # type: ignore"""Render the message body as HTML"""withopen(template_file) asfd: returnResponse( status=200, content_type=self.content_type, body=fd.read() ) defrender(view: View, request) ->Response: """Render a View"""returnview.get(request)

The expectation is that render() function will be able to work with View and its subtype TemplateView, but the latter has broken compatibility by modifying the signature of the .get() method. The function will raise a TypeError exception when used with TemplateView.

If we want the render() function to work with any subtype of View, we must pay attention not to break its public-facing protocol. But how do we know what constitutes it for a given class? Type hinters like mypy will raise an error when it detects mistakes like this:

error: Signature of "get" incompatible with supertype "View" <string>:36: note: Superclass: <string>:36: note: def get(self, request: Any) -> Response <string>:36: note: Subclass: <string>:36: note: def get(self, request: Any, template_file: str) -> Response 

Interface Segregation Principle (ISP) 介面隔離原則

“Keep interfaces small so that users don’t end up depending on things they don’t need.”, Uncle Bob.

Several well known object oriented programming languages, like Java and Go, have a concept called interfaces. An interface defines the public methods and properties of an object without implementing them. They are useful when we don't want to couple the signature of a function to a concrete object; we'd rather say "I don't care what object you give me, as long as it has certain methods and attributes I expect to make use of".

Python does not have interfaces. We have Abstract Base Classes instead, which are a little different, but can serve the same purpose.

Good

fromabcimportABCMeta, abstractmethod# Define the Abstract Class for a generic Greeter objectclassGreeter(metaclass=ABCMeta): """An object that can perform a greeting action."""@staticmethod@abstractmethoddefgreet(name: str) ->None: """Display a greeting for the user with the given name"""classFriendlyActor(Greeter): """An actor that greets the user with a friendly salutation"""@staticmethoddefgreet(name: str) ->None: """Greet a person by name"""print(f"Hello {name}!") defwelcome_user(user_name: str, actor: Greeter): """Welcome a user with a given name using the provided actor"""actor.greet(user_name) welcome_user("Barbara", FriendlyActor())

Now imagine the following scenario: we have a certain number of PDF documents that we author and want to serve to our web site visitors. We are using a Python web framework and we might be tempted to design a class to manage these documents, so we go ahead and design a comprehensive abstract base class for our document.

Error

importabcclassPersistable(metaclass=abc.ABCMeta): """Serialize a file to data and back"""@property@abc.abstractmethoddefdata(self) ->bytes: """The raw data of the file"""@classmethod@abc.abstractmethoddefload(cls, name: str): """Load the file from disk"""@abc.abstractmethoddefsave(self) ->None: """Save the file to disk"""# We just want to serve the documents, so our concrete PDF document# implementation just needs to implement the `.load()` method and have# a public attribute named `data`.classPDFDocument(Persistable): """A PDF document"""@propertydefdata(self) ->bytes: """The raw bytes of the PDF document""" ... # Code goes here - omitted for brevity@classmethoddefload(cls, name: str): """Load the file from the local filesystem""" ... # Code goes here - omitted for brevitydefview(request): """A web view that handles a GET request for a document"""requested_name=request.qs['name'] # We want to validate this!returnPDFDocument.load(requested_name).data

But we can't! If we don't implement the .save() method, an exception will be raised:

Can't instantiate abstract class PDFDocument with abstract method save. 

That's annoying. We don't really need to implement .save() here. We could implement a dummy method that does nothing or raises NotImplementedError, but that's useless code that we will need to maintain.

At the same time, if we remove .save() from the abstract class now we will need to add it back when we will later implement a way for users to submit their documents, bringing us back to the same situation as before.

The problem is that we have written an interface that has features we don't need right now as we are not using them.

The solution is to decompose the interface into smaller and composable interfaces that segregate each feature.

Good

importabcclassDataCarrier(metaclass=abc.ABCMeta): """Carries a data payload"""@propertydefdata(self): ... classLoadable(DataCarrier): """Can load data from storage by name"""@classmethod@abc.abstractmethoddefload(cls, name: str): ... classSaveable(DataCarrier): """Can save data to storage"""@abc.abstractmethoddefsave(self) ->None: ... classPDFDocument(Loadable): """A PDF document"""@propertydefdata(self) ->bytes: """The raw bytes of the PDF document""" ... # Code goes here - omitted for brevity@classmethoddefload(cls, name: str): """Load the file from the local filesystem""" ... # Code goes here - omitted for brevitydefview(request): """A web view that handles a GET request for a document"""requested_name=request.qs['name'] # We want to validate this!returnPDFDocument.load(requested_name).data

Dependency Inversion Principle (DIP) 依賴反轉原則

“Depend upon abstractions, not concrete details”, Uncle Bob.

Imagine we wanted to write a web view that returns an HTTP response that streams rows of a CSV file we create on the fly. We want to use the CSV writer that is provided by the standard library.

Bad

importcsvfromioimportStringIOclassStreamingHttpResponse: """A streaming HTTP response""" ... # implementation code goes heredefsome_view(request): rows= ( ['First row', 'Foo', 'Bar', 'Baz'], ['Second row', 'A', 'B', 'C', '"Testing"', "Here's a quote"] ) # Define a generator to stream data directly to the clientdefstream(): buffer_=StringIO() writer=csv.writer(buffer_, delimiter=';', quotechar='"') forrowinrows: writer.writerow(row) buffer_.seek(0) data=buffer_.read() buffer_.seek(0) buffer_.truncate() yielddata# Create the streaming response object with the appropriate CSV header.response=StreamingHttpResponse(stream(), content_type='text/csv') response['Content-Disposition'] ='attachment; filename="somefilename.csv"'returnresponse

Our first implementation works around the CSV's writer interface by manipulating a StringIO object (which is file-like) and performing several low level operations in order to farm out the rows from the writer. It's a lot of work and not very elegant.

A better way is to leverage the fact that the writer just needs an object with a .write() method to do our bidding. Why not pass it a dummy object that immediately returns the newly assembled row, so that the StreamingHttpResponse class can immediate stream it back to the client?

Good

importcsvclassEcho: """An object that implements just the write method of the file-like interface. """defwrite(self, value): """Write the value by returning it, instead of storing in a buffer."""returnvaluedefsome_streaming_csv_view(request): """A view that streams a large CSV file."""rows= ( ['First row', 'Foo', 'Bar', 'Baz'], ['Second row', 'A', 'B', 'C', '"Testing"', "Here's a quote"] ) writer=csv.writer(Echo(), delimiter=';', quotechar='"') returnStreamingHttpResponse( (writer.writerow(row) forrowinrows), content_type="text/csv", headers={'Content-Disposition': 'attachment; filename="somefilename.csv"'}, )

Much better, and it works like a charm! The reason it's superior to the previous implementation should be obvious: less code (and more performant) to achieve the same result. We decided to leverage the fact that the writer class depends on the .write() abstraction of the object it receives, without caring about the low level, concrete details of what the method actually does.

This example was taken from a submission made to the Django documentation by this author.

⬆ back to top

Don't repeat yourself (DRY) 別再重複做一次

Try to observe the DRY principle.

Do your absolute best to avoid duplicate code. Duplicate code is bad because it means that there's more than one place to alter something if you need to change some logic.

Imagine if you run a restaurant and you keep track of your inventory: all your tomatoes, onions, garlic, spices, etc. If you have multiple lists that you keep this on, then all have to be updated when you serve a dish with tomatoes in them. If you only have one list, there's only one place to update!

Often you have duplicate code because you have two or more slightly different things, that share a lot in common, but their differences force you to have two or more separate functions that do much of the same things. Removing duplicate code means creating an abstraction that can handle this set of different things with just one function/module/class.

Getting the abstraction right is critical. Bad abstractions can be worse than duplicate code, so be careful! Having said this, if you can make a good abstraction, do it! Don't repeat yourself, otherwise you'll find yourself updating multiple places any time you want to change one thing.

Bad:

fromtypingimportList, Dictfromdataclassesimportdataclass@dataclassclassDeveloper: def__init__(self, experience: float, github_link: str) ->None: self._experience=experienceself._github_link=github_link@propertydefexperience(self) ->float: returnself._experience@propertydefgithub_link(self) ->str: returnself._github_link@dataclassclassManager: def__init__(self, experience: float, github_link: str) ->None: self._experience=experienceself._github_link=github_link@propertydefexperience(self) ->float: returnself._experience@propertydefgithub_link(self) ->str: returnself._github_linkdefget_developer_list(developers: List[Developer]) ->List[Dict]: developers_list= [] fordeveloperindevelopers: developers_list.append({'experience' : developer.experience, 'github_link' : developer.github_link }) returndevelopers_listdefget_manager_list(managers: List[Manager]) ->List[Dict]: managers_list= [] formanagerinmanagers: managers_list.append({'experience' : manager.experience, 'github_link' : manager.github_link }) returnmanagers_list## create list objects of developerscompany_developers= [ Developer(experience=2.5, github_link='https://github.com/1'), Developer(experience=1.5, github_link='https://github.com/2') ] company_developers_list=get_developer_list(developers=company_developers) ## create list objects of managerscompany_managers= [ Manager(experience=4.5, github_link='https://github.com/3'), Manager(experience=5.7, github_link='https://github.com/4') ] company_managers_list=get_manager_list(managers=company_managers)

Good:

fromtypingimportList, Dictfromdataclassesimportdataclass@dataclassclassEmployee: def__init__(self, experience: float, github_link: str) ->None: self._experience=experienceself._github_link=github_link@propertydefexperience(self) ->float: returnself._experience@propertydefgithub_link(self) ->str: returnself._github_linkdefget_employee_list(employees: List[Employee]) ->List[Dict]: employees_list= [] foremployeeinemployees: employees_list.append({'experience' : employee.experience, 'github_link' : employee.github_link }) returnemployees_list## create list objects of developerscompany_developers= [ Employee(experience=2.5, github_link='https://github.com/1'), Employee(experience=1.5, github_link='https://github.com/2') ] company_developers_list=get_employee_list(employees=company_developers) ## create list objects of managerscompany_managers= [ Employee(experience=4.5, github_link='https://github.com/3'), Employee(experience=5.7, github_link='https://github.com/4') ] company_managers_list=get_employee_list(employees=company_managers)

⬆ back to top

Translations 翻譯

This document is also available in other languages:

⬆ back to top

About

🛁 Clean Code concepts adapted for Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python98.7%
  • Makefile1.3%