Privacy-first document tagger using local AI. Automatically tags your files with up to 10 relevant tags.
- 🔒 100% Private - All AI processing happens locally
- 🏷️ Smart Tagging - Up to 10 tags per file
- 🔍 Search - Find files by name or tags
- 💼 Financial Docs - Detects I797, bank statements, tax forms, etc.
- 💾 Local Storage - Tags saved in JSON database
- 🌐 Modern Web UI - Clean, responsive interface using HTML/CSS/JS
- 🎯 Intelligent Filtering - Only processes text-based documents with AI, uses heuristics for binary files
Modern, responsive web interface with real-time updates:
python web_ui.py # Then open http://localhost:5000 in your browserTraditional tkinter-based desktop application:
python docsifter.pypython setup.py # Interactive setup python web_ui.py # Run the web app- Choose between Web UI (recommended) or Desktop UI
- Select folder (Documents, Desktop, Downloads)
- Click "Scan & Tag Files"
- Search your tagged files
Important Notes:
- Text-based documents (PDF, Word, Excel, etc.) are analyzed by AI for intelligent tagging
- Binary files (images, videos, audio, archives) get basic heuristic tags only - AI doesn't guess content it can't see
- AI is conservative and only tags based on clear evidence in filenames and extensions
Tags include:
- Document type (pdf, image, spreadsheet)
- Category (financial, immigration, legal)
- Specific forms (I797, W2, bank-statement)
- Year (2024, 2025)
- Python 3.7+
- Ollama (installed by setup script)
# Install Ollama brew install ollama # macOS# or visit ollama.ai# Download model ollama pull llama3.2 # Install dependencies pip install -r requirements.txt # Run python docsifter.pyMIT