Skip to content

epsilla-cloud/epsilla-python-client

Epsilla Logo

Python Client for Epsilla Vector Database


Welcome to Python SDK for Epsilla Vector Database!

Install pyepsilla

pip3 install --upgrade pyepsilla

Connect to Epsilla Vector Database

Run epsilla vectordb on localhost

docker pull epsilla/vectordb docker run -d -p 8888:8888 epsilla/vectordb

When Port 8888 conflicted with Jupyter Notebook

If you are using Jupyter Notebook on localhost, the port 8888 maybe conflict!

So you can change the vectordb port to another number, such as 18888

docker run -d -p 18888:8888 epsilla/vectordb 

Use pyepsilla to connect to and interact with local vector database

frompyepsillaimportvectordbdb_name="MyDB"db_path="/tmp/epsilla"table_name="MyTable"## 1.Connect to vectordbclient=vectordb.Client( host='localhost', port='8888' ) ## 2.Load and use a databaseclient.load_db(db_name, db_path) client.use_db(db_name) ## 3.Create a table in the current databaseclient.create_table( table_name=table_name, table_fields=[{"name": "ID", "dataType": "INT", "primaryKey": True},{"name": "Doc", "dataType": "STRING"},{"name": "Embedding", "dataType": "VECTOR_FLOAT", "dimensions": 4} ] ) ## 4.Insert recordsclient.insert( table_name=table_name, records=[{"ID": 1, "Doc": "Berlin", "Embedding": [0.05, 0.61, 0.76, 0.74]},{"ID": 2, "Doc": "London", "Embedding": [0.19, 0.81, 0.75, 0.11]},{"ID": 3, "Doc": "Moscow", "Embedding": [0.36, 0.55, 0.47, 0.94]},{"ID": 4, "Doc": "San Francisco", "Embedding": [0.18, 0.01, 0.85, 0.80]},{"ID": 5, "Doc": "Shanghai", "Embedding": [0.24, 0.18, 0.22, 0.44]} ] ) ## 5.Search with specific response fieldstatus_code, response=client.query( table_name=table_name, query_field="Embedding", query_vector=[0.35, 0.55, 0.47, 0.94], response_fields= ["Doc"], limit=2 ) print(response) ## 6.Search without specific response field, then it will return all fieldsstatus_code, response=client.query( table_name=table_name, query_field="Embedding", query_vector=[0.35, 0.55, 0.47, 0.94], limit=2 ) print(response) ## 7.Delete records by primary_keys (and filter)status_code, response=client.delete(table_name=table_name, primary_keys=[3, 4]) status_code, response=client.delete(table_name=table_name, filter="Doc <> 'San Francisco'") print(response) ## 8.Drop a tableclient.drop_table(table_name) ## 9.Unload a database from memoryclient.unload_db(db_name)

Connect to Epsilla Cloud

Register and create vectordb on Epsilla Cloud

https://cloud.epsilla.com

Use Epsilla Cloud module to connect with the vectordb

Please get the project_id, db_id, epsilla_api_key from Epsilla Cloud at first

frompyepsillaimportcloudepsilla_api_key=os.getenv("EPSILLA_API_KEY", "Your-Epsilla-API-Key") project_id=os.getenv("EPSILLA_PROJECT_ID", "Your-Project-ID") db_id=os.getenv("EPSILLA_DB_ID", "Your-DB-ID") # 1.Connect to Epsilla Cloudcloud_client=cloud.Client(project_id="*****-****-****-****-************", api_key="eps_**********") # 2.Connect to Vectordbdb_client=cloud_client.vectordb(db_id) # 3.Create a table with schemastatus_code, response=db.create_table( table_name="MyTable", table_fields=[{"name": "ID", "dataType": "INT", "primaryKey": True},{"name": "Doc", "dataType": "STRING"},{"name": "Embedding", "dataType": "VECTOR_FLOAT", "dimensions": 4}, ], ) print(status_code, response) # 4.Insert new vector records into tablestatus_code, response=db.insert( table_name="MyTable", records=[{"ID": 1, "Doc": "Berlin", "Embedding": [0.05, 0.61, 0.76, 0.74]},{"ID": 2, "Doc": "London", "Embedding": [0.19, 0.81, 0.75, 0.11]},{"ID": 3, "Doc": "Moscow", "Embedding": [0.36, 0.55, 0.47, 0.94]},{"ID": 4, "Doc": "San Francisco", "Embedding": [0.18, 0.01, 0.85, 0.80]},{"ID": 5, "Doc": "Shanghai", "Embedding": [0.24, 0.18, 0.22, 0.44]}, ], ) print(status_code, response) # 5.Query Vectors with specific response field, otherwise it will return all fieldsstatus_code, response=db.query( table_name="MyTable", query_field="Embedding", query_vector=[0.35, 0.55, 0.47, 0.94], response_fields=["Doc"], limit=2, ) print(status_code, response) # 6.Delete specific records from tablestatus_code, response=db.delete(table_name="MyTable", primary_keys=[4, 5]) status_code, response=db.delete(table_name="MyTable", filter="Doc <> 'San Francisco'") print(status_code, response) # 7.Drop tablestatus_code, response=db.drop_table(table_name="MyTable") print(status_code, response) 

Connect to Epsilla RAG

Please get the project_id, epsilla_api_key, ragapp_id, converstation_id(optional) from Epsilla Cloud at first The resp will contains answer as well as contexts, like{"answer": "****", "contexts": ['context1','context2', ...]}

frompyepsillaimportcloudepsilla_api_key=os.getenv("EPSILLA_API_KEY", "Your-Epsilla-API-Key") project_id=os.getenv("EPSILLA_PROJECT_ID", "Your-Project-ID") ragapp_id=os.getenv("EPSILLA_RAGAPP_ID", "Your-RAGAPP-ID") conversation_id=os.getenv("EPSILLA_CONVERSATION_ID", "Your-CONVERSATION-ID") # 1.Connect to Epsilla RAGclient=cloud.RAG( project_id=project_id, api_key=epsilla_api_key, ragapp_id=ragapp_id, conversation_id=conversation_id, ) # 2.Start a new conversation with RAGclient.start_new_conversation() resp=client.query("What's RAG?") print("[INFO] response is", resp)

Contributing

Bug reports and pull requests are welcome on GitHub at here

If you have any question or problem, please join our discord

We love your Feedback!

About

Python client for Epsilla Vector Database

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 10

Languages