Skip to content

fcas/python-neuron

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

10 Commits

Repository files navigation

Neuron class

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm. This class is suitable for prediction on time series.

Dependencies

Neuron class needs pandas and numpy to work propertly.

Example of usage

Consider Y are targets and X are inputs.

## LNUGD

neuron=LNUGD() prediction=1yn, w, e, Wall, MSE=neuron.train(Y_train, X_train, epochs=2, prediction=prediction) yn, w, Wall, MSE, e=neuron.countSerie(Y, X, logging=False, prediction=prediction)

QNULM

neuron=QNULM() prediction=1yn, w, e, Wall, MSE=neuron.train(Y_train, X_train, epochs=10, prediction=prediction) yn, w, MSE, e=neuron.countSerie(Y, X, logging=False, prediction=prediction)

RBF

neuron=RBF() prediction=1neuron.train(Y_train, X_train, prediction=prediction) yn=neuron.count(Y,X, logging=True, beta=0.01, prediction=prediction)

MLPGD

neuron=MLPGD() prediction=1yn=neuron.count(Y_train, X_train, prediction=prediction, epochs=5) yn=neuron.count(Y, X, prediction=prediction, epochs=1)

MLPELM

neuron=MLPELM() prediction=1yn=neuron.count(Y_train, X_train, prediction=prediction, epochs=10) yn=neuron.count(Y, X, prediction=prediction)

MLPLMWL

neuron=MLPLMWL() prediction=1yn=neuron.count(Y, X, learningWindow=50, overLearn=10, prediction=prediction)

Support me

If you find this useful, consider supporting independent open-source development and buy me a coffee.

buy me a coffee

About

Neuron class provides LNU, QNU, RBF, MLP, MLP-ELM neurons

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python100.0%