Skip to content

Stanford Unsupervised Feature Learning and Deep Learning Tutorial

License

Notifications You must be signed in to change notification settings

liaobs/ufldl_tutorial

Repository files navigation

Stanford Unsupervised Feature Learning and Deep Learning Tutorial

Tutorial Website: http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

Sparse Autoencoder

Sparse Autoencoder vectorized implementation, learning/visualizing features on MNIST data

Preprocessing: PCA & Whitening

Implement PCA, PCA whitening & ZCA whitening

Softmax Regression

Classify MNIST digits via softmax regression (multivariate logistic regression)

Self-Taught Learning and Unsupervised Feature Learning

Classify MNIST digits via self-taught learning paradigm, i.e. learn features via sparse autoencoder using digits 5-9 as unlabelled examples and train softmax regression on digits 0-4 as labelled examples

Building Deep Networks for Classification (Stacked Sparse Autoencoder)

Stacked sparse autoencoder for MNIST digit classification

Linear Decoders with Auto encoders

Learn features on 8x8 patches of 96x96 STL-10 color images via linear decoder (sparse autoencoder with linear activation function in output layer)

Working with Large Images (Convolutional Neural Networks)

Classify 64x64 STL-10 images using features learnt via linear decoder (previous section) and convolutional neural networks

About

Stanford Unsupervised Feature Learning and Deep Learning Tutorial

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published