Skip to content

localstack/verdin

Verdin

PyPI VersionCI StatusCoverage StatusPyPI LicenseCode style: black

Verdin is a tiny bird, and also a Tinybird SDK for Python.

Install

pip install verdin 

Requirements

Python 3.10+

Usage

Run an SQL Query

# the tinybird module exposes all important tinybird conceptsfromverdinimporttinybirdclient=tinybird.Client("p.mytoken") query=client.sql("select * from my_datasource__v0") # run the query with `FORMAT JSON` and receive a QueryJsonResultresponse: tinybird.QueryJsonResult=query.json() # print records returned from the pipeprint(response.data)

You can also run, e.g., query.get(format=OutputFormat.CSV) to get the raw response with CSV data.

Query a Pipe

fromverdinimporttinybirdclient=tinybird.Client("p.mytoken") pipe=client.pipe("my_pipe") # query the pipe using dynamic parametersresponse: tinybird.PipeJsonResponse=pipe.query({"key": "val"}) # print records returned from the pipeprint(response.data)

Append to a data source

fromverdinimporttinybirdclient=tinybird.Client("p.mytoken") # will access my_datasource__v0datasource=client.datasource("my_datasource", version=0) # query the pipe using dynamic parametersdatasource.append([ ("col1-row1", "col2-row1"), ("col1-row2", "col2-row2"), ])

Append to a data source using high-frequency ingest

The DataSource object also gives you access to /v0/events, which is the high-frequency ingest, to append data. Use the send_events method and pass JSON serializable documents to it.

datasource.send_events(records=[{"key": "val1"},{"key": "val2"}, ... ])

Queue and batch records into a DataSource

Verdin provides a way to queue and batch data continuously:

fromqueueimportQueuefromthreadingimportThreadfromverdinimporttinybirdfromverdin.workerimportQueuingDatasourceAppenderclient=tinybird.Client("p.mytoken") records=Queue() appender=QueuingDatasourceAppender(records, client.datasource("my_datasource")) Thread(target=appender.run).start() # appender will regularly read batches of data from the queue and append them# to the datasource. the appender respects rate limiting.records.put(("col1-row1", "col2-row1")) records.put(("col1-row2", "col2-row2"))

API access

The DataSource and Pipes objects presented so far are high-level abstractions that provide a convenience Python API to deal with the most common use cases. Verdin also provides more low-level access to APIs via client.api. The following APIs are available:

  • /v0/datasources: client.api.datasources
  • /v0/events: client.api.events
  • /v0/pipes: client.api.pipes
  • /v0/sql: client.api.query
  • /v0/tokens: client.api.tokens
  • /v0/variables: client.api.variables

Note that for some (datasources, pipes, tokens), manipulation operations are not implemented as they are typically done through tb deployments and not through the API.

Also note that API clients do not take care of retries or rate limiting. The caller is expected to handle fault tolerance.

Example (Querying a pipe)

You can query a pipe through the pipes API as follows:

fromverdinimporttinybirdclient=tinybird.Client(...) response=client.api.pipes.query( "my_pipe", parameters={"my_param": "..."}, query="SELECT * FROM _ LIMIT 10", ) forrecordinresponse.data: # each record is a dictionary ...

Example (High-frequency ingest)

You can use the HFI endpoint /v0/events through the events api. As records, you can pass a list of JSON serializable documents.

fromverdinimporttinybirdclient=tinybird.Client(...) response=client.api.events.send("my_datasource", records=[{"id": "...", "value": "..."}, ... ]) assertresponse.quarantined_rows==0

Develop

Create the virtual environment, install dependencies, and run tests

make venv make test 

Run the code formatter

make format 

Upload the pypi package using twine

make upload 

About

A Tinybird SDK for Python 🐦

Topics

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published