Uh oh!
There was an error while loading. Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork 19.4k
Description
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the [main branch] (https://pandas.pydata.org/docs/dev/getting_started/install.html#installing-the-development-version-of-pandas) of pandas.
Reproducible Example
importpandasaspdimportjsondefjson_conversion(df, orient_type="values"): # convert dataframe to a JSON stringjson_str=df.to_json(orient=orient_type) # write the JSON string to a filewithopen('data.json', 'w') asf: json.dump(json_str, f) # read the JSON string from the filewithopen('data.json', 'r') asf: json_str=json.load(f) # Convert the JSON string back to a dataframedf2=pd.read_json(json_str, orient=orient_type) returndf2# Create a dataframe with imaginary numbersdf=pd.DataFrame({'a': [1+2j, 3+4j], 'b': [5+6j, 7+8j]}) print(df) # a b# 0 1.0+2.0j 5.0+6.0j# 1 3.0+4.0j 7.0+8.0j# Check with `values`df_values_json=json_conversion(df, "values") print(df_values_json) # 0 1# 0{'imag': 2.0, 'real': 1.0}{'imag': 6.0, 'real': 5.0}# 1{'imag': 4.0, 'real': 3.0}{'imag': 8.0, 'real': 7.0}# Check with `table`df_table_json=json_conversion(df, "table") # TypeError: float() argument must be a string or a number, not 'dict'Issue Description
When trying to re-create a dataframe with complex numbers using JSON, the pd.read_json() function has trouble with different orientations, e.g. orient="values" and orient="table". In particular, the reconstructed data frame either treats the number as a combined dictionary with "imag" and "real" entries or is unable to be recreated due to a TypeError.
| a | b | |
|---|---|---|
| 0 | 1+2j | 5+6j |
| 1 | 3+4j | 7+8j |
JSON Output under `orient='values'`
[ [{"imag":2.0, "real":1.0 },{"imag":6.0, "real":5.0 } ], [{"imag":4.0, "real":3.0 },{"imag":8.0, "real":7.0 } ] ]This leads to the reconstructed data frame looking like so:
| 0 | 1 | |
|---|---|---|
| 0 | {'imag': 2.0, 'real': 1.0} | {'imag': 6.0, 'real': 5.0} |
| 1 | {'imag': 4.0, 'real': 3.0} | {'imag': 8.0, 'real': 7.0} |
In the case of orient='table', we have:
JSON Output under `orient='table'`
{"schema":{"fields":[{"name":"index", "type":"integer" },{"name":"a", "type":"number" },{"name":"b", "type":"number" } ], "primaryKey":[ "index" ], "pandas_version":"0.20.0" }, "data":[{"index":0, "a":{"imag":2.0 }, "b":{"imag":6.0 } },{"index":1, "a":{"imag":4.0 }, "b":{"imag":8.0 } } ] }The end output is a TypeError of:
TypeError: float() argumentmustbeastringoranumber, not'dict'Expected Behavior
Ideally, the original data frame should be constructed up to column names in the values case whereas the table case should be identical to the original data frame.
Installed Versions
Details
INSTALLED VERSIONS
commit : 8dab54d
python : 3.8.16.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.147+
Version : #1 SMP Sat Dec 10 16:00:40 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.5.2
numpy : 1.21.6
pytz : 2022.7
dateutil : 2.8.2
setuptools : 57.4.0
pip : 22.0.4
Cython : 0.29.32
pytest : 3.6.4
hypothesis : None
sphinx : 3.5.4
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.9.2
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.9.5
jinja2 : 2.11.3
IPython : 7.9.0
pandas_datareader: 0.9.0
bs4 : 4.6.3
bottleneck : None
brotli : None
fastparquet : None
fsspec : 2022.11.0
gcsfs : None
matplotlib : 3.2.2
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : 0.17.9
pyarrow : 9.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.7.3
snappy : None
sqlalchemy : 1.4.46
tables : 3.7.0
tabulate : 0.8.10
xarray : 2022.12.0
xlrd : 1.2.0
xlwt : 1.3.0
zstandard : None
tzdata : None