Skip to content

psqlpy-python/pgvector-rust

Repository files navigation

pgvector-rust

pgvector support for Rust

Supports Rust-Postgres, SQLx, and Diesel

Build Status

Getting Started

Follow the instructions for your database library:

Or check out some examples:

Rust-Postgres

Add this line to your application’s Cargo.toml under [dependencies]:

pgvector ={version = "0.4", features = ["postgres"] }

Enable the extension

client.execute("CREATE EXTENSION IF NOT EXISTS vector",&[])?;

Create a table

client.execute("CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))",&[])?;

Create a vector from a Vec<f32>

use pgvector::Vector;let embedding = Vector::from(vec![1.0,2.0,3.0]);

Insert a vector

client.execute("INSERT INTO items (embedding) VALUES ($1)",&[&embedding])?;

Get the nearest neighbor

let row = client.query_one("SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 1",&[&embedding],)?;

Retrieve a vector

let row = client.query_one("SELECT embedding FROM items LIMIT 1",&[])?;let embedding:Vector = row.get(0);

Use Option if the value could be NULL

let embedding:Option<Vector> = row.get(0);

SQLx

Add this line to your application’s Cargo.toml under [dependencies]:

pgvector ={version = "0.4", features = ["sqlx"] }

For SQLx < 0.8, use version = "0.3" and this readme.

Enable the extension

sqlx::query("CREATE EXTENSION IF NOT EXISTS vector").execute(&pool).await?;

Create a table

sqlx::query("CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))").execute(&pool).await?;

Create a vector from a Vec<f32>

use pgvector::Vector;let embedding = Vector::from(vec![1.0,2.0,3.0]);

Insert a vector

sqlx::query("INSERT INTO items (embedding) VALUES ($1)").bind(embedding).execute(&pool).await?;

Get the nearest neighbors

let rows = sqlx::query("SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 1").bind(embedding).fetch_all(&pool).await?;

Retrieve a vector

let row = sqlx::query("SELECT embedding FROM items LIMIT 1").fetch_one(&pool).await?;let embedding:Vector = row.try_get("embedding")?;

Diesel

Add this line to your application’s Cargo.toml under [dependencies]:

pgvector ={version = "0.4", features = ["diesel"] }

And update your application’s diesel.toml under [print_schema]:

import_types = ["diesel::sql_types::*", "pgvector::sql_types::*"] generate_missing_sql_type_definitions = false

Create a migration

diesel migration generate create_vector_extension

with up.sql:

CREATE EXTENSION vector

and down.sql:

DROP EXTENSION vector

Run the migration

diesel migration run

You can now use the vector type in future migrations

CREATETABLEitems ( id SERIALPRIMARY KEY, embedding VECTOR(3) )

For models, use:

use pgvector::Vector;#[derive(Queryable)]#[diesel(table_name = items)]pubstructItem{pubid:i32,pubembedding:Option<Vector>,}#[derive(Insertable)]#[diesel(table_name = items)]pubstructNewItem{pubembedding:Option<Vector>,}

Create a vector from a Vec<f32>

let embedding = Vector::from(vec![1.0,2.0,3.0]);

Insert a vector

let new_item = NewItem{embedding:Some(embedding)}; diesel::insert_into(items::table).values(&new_item).get_result::<Item>(&mut conn)?;

Get the nearest neighbors

use pgvector::VectorExpressionMethods;let neighbors = items::table .order(items::embedding.l2_distance(embedding)).limit(5).load::<Item>(&mut conn)?;

Also supports max_inner_product, cosine_distance, l1_distance, hamming_distance, and jaccard_distance

Get the distances

let distances = items::table .select(items::embedding.l2_distance(embedding)).load::<Option<f64>>(&mut conn)?;

Add an approximate index in a migration

CREATEINDEXmy_indexON items USING hnsw (embedding vector_l2_ops) -- orCREATEINDEXmy_indexON items USING ivfflat (embedding vector_l2_ops) WITH (lists =100)

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

Serialization

Use the serde feature to enable serialization

Half Vectors

Use the halfvec feature to enable half vectors

Reference

Convert a vector to a Vec<f32>

let f32_vec:Vec<f32> = vec.into();

Get a slice

let slice = vec.as_slice();

History

View the changelog

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/pgvector/pgvector-rust.git cd pgvector-rust createdb pgvector_rust_test cargo test --all-features

To run an example:

cd examples/loading createdb pgvector_example cargo run

About

pgvector support for Rust

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust100.0%