Skip to content

Conversation

@skirpichev
Copy link
Member

@skirpichevskirpichev commented Jul 29, 2025

This is a first part, that should address #136681. With this patch there should be no overhead for function calls if it's signature allows keyword arguments.

Below are micro-benchmarks for math.fmin(), when only positional arguments are allowed (as in the main) vs positional-or-keyword.

The missing part is specialization for 1-arg functions, like cmath.sin(): #136681 (comment)

In the main:

Benchmarkposonly-patchposorkw-patch
fmin(1.0, 2.0)169 ns170 ns: 1.01x slower
fmin(1.0, 2.0) x 2 times913 ns890 ns: 1.03x faster
fmin(1.0, 2.0) x 100 times14.7 us14.8 us: 1.01x slower
Geometric mean(ref)1.00x faster

Benchmark hidden because not significant (1): fmin(1.0, 2.0) x 10 times

With the patch:

Benchmarkposonly-refposorkw-ref
fmin(1.0, 2.0)177 ns199 ns: 1.12x slower
fmin(1.0, 2.0) x 2 times937 ns980 ns: 1.05x slower
fmin(1.0, 2.0) x 10 times2.08 us2.25 us: 1.08x slower
fmin(1.0, 2.0) x 100 times14.8 us16.5 us: 1.12x slower
Geometric mean(ref)1.09x slower

Benchmark code:

importpyperffrommathimportfmindeff(n): for_inrange(n): fmin(1.0, 2.0) runner=pyperf.Runner() runner.bench_func('fmin(1.0, 2.0)', fmin, 1.0, 2.0) fornin [2, 10, 100]: s=f'fmin(1.0, 2.0) x {n:3} times'runner.bench_func(s, f, n)

This is a first part, that should address python#136681. With this patch there should be no overhead for function calls if it's signature allows keyword arguments. Below are micro-benchmarks for math.fmin(), when only positional arguments are allowed (as in the main) vs positional-or-keyword. The missing part is specialization for 1-arg functions, like cmath.sin(): python#136681 (comment) In the main: | Benchmark | posonly-patch | posorkw-patch | |----------------------------|:-------------:|:---------------------:| | fmin(1.0, 2.0) | 169 ns | 170 ns: 1.01x slower | | fmin(1.0, 2.0) x 2 times | 913 ns | 890 ns: 1.03x faster | | fmin(1.0, 2.0) x 100 times | 14.7 us | 14.8 us: 1.01x slower | | Geometric mean | (ref) | 1.00x faster | Benchmark hidden because not significant (1): fmin(1.0, 2.0) x 10 times With the patch: | Benchmark | posonly-ref | posorkw-ref | |----------------------------|:-----------:|:---------------------:| | fmin(1.0, 2.0) | 177 ns | 199 ns: 1.12x slower | | fmin(1.0, 2.0) x 2 times | 937 ns | 980 ns: 1.05x slower | | fmin(1.0, 2.0) x 10 times | 2.08 us | 2.25 us: 1.08x slower | | fmin(1.0, 2.0) x 100 times | 14.8 us | 16.5 us: 1.12x slower | | Geometric mean | (ref) | 1.09x slower | Benchmark code: ```py import pyperf from math import fmin def f(n): for _ in range(n): fmin(1.0, 2.0) runner = pyperf.Runner() runner.bench_func('fmin(1.0, 2.0)', fmin, 1.0, 2.0) for n in [2, 10, 100]: s = f'fmin(1.0, 2.0) x{n:3} times' runner.bench_func(s, f, n) ```
@skirpichevskirpichev deleted the fast-posorkw/136681 branch July 29, 2025 12:40
Sign up for freeto join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant

@skirpichev