Documentation ◆ Samples ◆ Python SDK ◆ Tools ◆ Agent Builder ◆ MCP Server
Strands Agents is a simple yet powerful SDK that takes a model-driven approach to building and running AI agents. From simple conversational assistants to complex autonomous workflows, from local development to production deployment, Strands Agents scales with your needs.
- Lightweight & Flexible: Simple agent loop that just works and is fully customizable
- Model Agnostic: Support for Amazon Bedrock, Anthropic, Gemini, LiteLLM, Llama, Ollama, OpenAI, Writer, and custom providers
- Advanced Capabilities: Multi-agent systems, autonomous agents, and streaming support
- Built-in MCP: Native support for Model Context Protocol (MCP) servers, enabling access to thousands of pre-built tools
# Install Strands Agents pip install strands-agents strands-agents-toolsfromstrandsimportAgentfromstrands_toolsimportcalculatoragent=Agent(tools=[calculator]) agent("What is the square root of 1764")Note: For the default Amazon Bedrock model provider, you'll need AWS credentials configured and model access enabled for Claude 4 Sonnet in the us-west-2 region. See the Quickstart Guide for details on configuring other model providers.
Ensure you have Python 3.10+ installed, then:
# Create and activate virtual environment python -m venv .venv source .venv/bin/activate # On Windows use: .venv\Scripts\activate# Install Strands and tools pip install strands-agents strands-agents-toolsEasily build tools using Python decorators:
fromstrandsimportAgent, tool@tooldefword_count(text: str) ->int: """Count words in text. This docstring is used by the LLM to understand the tool's purpose. """returnlen(text.split()) agent=Agent(tools=[word_count]) response=agent("How many words are in this sentence?")Hot Reloading from Directory: Enable automatic tool loading and reloading from the ./tools/ directory:
fromstrandsimportAgent# Agent will watch ./tools/ directory for changesagent=Agent(load_tools_from_directory=True) response=agent("Use any tools you find in the tools directory")Seamlessly integrate Model Context Protocol (MCP) servers:
fromstrandsimportAgentfromstrands.tools.mcpimportMCPClientfrommcpimportstdio_client, StdioServerParametersaws_docs_client=MCPClient( lambda: stdio_client(StdioServerParameters(command="uvx", args=["awslabs.aws-documentation-mcp-server@latest"])) ) withaws_docs_client: agent=Agent(tools=aws_docs_client.list_tools_sync()) response=agent("Tell me about Amazon Bedrock and how to use it with Python")Support for various model providers:
fromstrandsimportAgentfromstrands.modelsimportBedrockModelfromstrands.models.ollamaimportOllamaModelfromstrands.models.llamaapiimportLlamaAPIModelfromstrands.models.geminiimportGeminiModelfromstrands.models.llamacppimportLlamaCppModel# Bedrockbedrock_model=BedrockModel( model_id="us.amazon.nova-pro-v1:0", temperature=0.3, streaming=True, # Enable/disable streaming ) agent=Agent(model=bedrock_model) agent("Tell me about Agentic AI") # Google Geminigemini_model=GeminiModel( client_args={"api_key": "your_gemini_api_key", }, model_id="gemini-2.5-flash", params={"temperature": 0.7} ) agent=Agent(model=gemini_model) agent("Tell me about Agentic AI") # Ollamaollama_model=OllamaModel( host="http://localhost:11434", model_id="llama3" ) agent=Agent(model=ollama_model) agent("Tell me about Agentic AI") # Llama APIllama_model=LlamaAPIModel( model_id="Llama-4-Maverick-17B-128E-Instruct-FP8", ) agent=Agent(model=llama_model) response=agent("Tell me about Agentic AI")Built-in providers:
Custom providers can be implemented using Custom Providers
Strands offers an optional strands-agents-tools package with pre-built tools for quick experimentation:
fromstrandsimportAgentfromstrands_toolsimportcalculatoragent=Agent(tools=[calculator]) agent("What is the square root of 1764")It's also available on GitHub via strands-agents/tools.
For detailed guidance & examples, explore our documentation:
We welcome contributions! See our Contributing Guide for details on:
- Reporting bugs & features
- Development setup
- Contributing via Pull Requests
- Code of Conduct
- Reporting of security issues
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
See CONTRIBUTING for more information.