Skip to content

sdpython/onnx-array-api

Repository files navigation

https://github.com/sdpython/onnx-array-api/raw/main/_doc/_static/logo.png

onnx-array-api: APIs to create ONNX Graphs

https://dev.azure.com/xavierdupre3/onnx-array-api/_apis/build/status/sdpython.onnx-array-apiGitHub IssuesMIT Licensesizehttps://codecov.io/gh/sdpython/onnx-array-api/branch/main/graph/badge.svg?token=Wb9ZGDta8J

onnx-array-api implements APIs to create custom ONNX graphs. The objective is to speed up the implementation of converter libraries. The library is released on pypi/onnx-array-api and its documentation is published at APIs to create ONNX Graphs.

Numpy API

The first one matches numpy API. It gives the user the ability to convert functions written following the numpy API to convert that function into ONNX as well as to execute it.

importnumpyasnpfromonnx_array_api.npximportabsolute, jit_onnxfromonnx_array_api.plotting.text_plotimportonnx_simple_text_plotdefl1_loss(x, y): returnabsolute(x-y).sum() defl2_loss(x, y): return ((x-y) **2).sum() defmyloss(x, y): returnl1_loss(x[:, 0], y[:, 0]) +l2_loss(x[:, 1], y[:, 1]) jitted_myloss=jit_onnx(myloss) x=np.array([[0.1, 0.2], [0.3, 0.4]], dtype=np.float32) y=np.array([[0.11, 0.22], [0.33, 0.44]], dtype=np.float32) res=jitted_myloss(x, y) print(res) print(onnx_simple_text_plot(jitted_myloss.get_onnx()))
[0.042] opset: domain='' version=18 input: name='x0' type=dtype('float32') shape=['', ''] input: name='x1' type=dtype('float32') shape=['', ''] Sub(x0, x1) -> r__0 Abs(r__0) -> r__1 ReduceSum(r__1, keepdims=0) -> r__2 output: name='r__2' type=dtype('float32') shape=None 

It supports eager mode as well:

importnumpyasnpfromonnx_array_api.npximportabsolute, eager_onnxdefl1_loss(x, y): err=absolute(x-y).sum() print(f"l1_loss={err.numpy()}") returnerrdefl2_loss(x, y): err= ((x-y) **2).sum() print(f"l2_loss={err.numpy()}") returnerrdefmyloss(x, y): returnl1_loss(x[:, 0], y[:, 0]) +l2_loss(x[:, 1], y[:, 1]) eager_myloss=eager_onnx(myloss) x=np.array([[0.1, 0.2], [0.3, 0.4]], dtype=np.float32) y=np.array([[0.11, 0.22], [0.33, 0.44]], dtype=np.float32) res=eager_myloss(x, y) print(res)
l1_loss=[0.04] l2_loss=[0.002] [0.042] 

Light API

The second API or Light API tends to do every thing in one line. It is inspired from the Reverse Polish Notation. The euclidean distance looks like the following:

importnumpyasnpfromonnx_array_api.light_apiimportstartfromonnx_array_api.plotting.text_plotimportonnx_simple_text_plotmodel= ( start() .vin("X") .vin("Y") .bring("X", "Y") .Sub() .rename("dxy") .cst(np.array([2], dtype=np.int64), "two") .bring("dxy", "two") .Pow() .ReduceSum() .rename("Z") .vout() .to_onnx() )

GraphBuilder API

Almost every converting library (converting a machine learned model to ONNX) is implementing its own graph builder and customizes it for its needs. It handles some frequent tasks such as giving names to intermediate results, loading, saving onnx models. It can be used as well to extend an existing graph.

importnumpyasnpfromonnx_array_api.graph_apiimportGraphBuilderg=GraphBuilder() g.make_tensor_input("X", np.float32, (None, None)) g.make_tensor_input("Y", np.float32, (None, None)) r1=g.make_node("Sub", ["X", "Y"]) # the name given to the output is given by the class,# it ensures the name is uniqueinit=g.make_initializer(np.array([2], dtype=np.int64)) # the class automatically# converts the array to a tensorr2=g.make_node("Pow", [r1, init]) g.make_node("ReduceSum", [r2], outputs=["Z"]) # the output name is given because# the user wants to choose the nameg.make_tensor_output("Z", np.float32, (None, None)) onx=g.to_onnx() # final conversion to onnx

About

Array APIs to write ONNX Graphs

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages