- Notifications
You must be signed in to change notification settings - Fork 339
Closed
Labels
enhancementNew feature or requestNew feature or request
Description
@marcusau asked:
I have tried multi-dimensional array to mstump with stock prices and its technical indicators
#### step 2 : Feature creation df1=df.copy() df1['Close_pct']=np.log(df1['Close'] / df1['Close'].shift(1)).dropna() df1['STDDEV']= ta.STDDEV(df1['Close'], timeperiod=5, nbdev=1) ### Volume Indicator Functions df1['OBV']=ta.OBV(df1['Close'], df1['Volume']) df1['Chaikin AD'] = ta.AD(df1['High'], df1['Low'], df1['Close'], df1['Volume']) ### momentum Indicator macd, macdsignal, macdhist = ta.MACD(df1['Close'], fastperiod=12, slowperiod=26, signalperiod=9) df1['macdhist']=macdhist df1['RSI']= ta.RSI(df1['Close'], timeperiod=14) # Volatility Indicator Functions df1['NATR'] = ta.NATR(df1['High'], df1['Low'], df1['Close'], timeperiod=14) df1['TRANGE'] = ta.TRANGE(df1['High'], df1['Low'], df1['Close']) print(df1.tail()) print(list(set(df.columns) ^ set(df1.columns))) feature_cols=list(set(df.columns) ^ set(df1.columns)) df1=df1.loc[:,feature_cols].dropna() print(df1.head()) #Store these values in the NumPy array for using in our models later: f_x=() for f in feature_cols: f_x += (df1[f].values.reshape(-1,1),) X = np.concatenate(f_x,axis=1) X=X.T print(X.shape) >>>> (8, 2429) window_size = 10 # Approximately, how many data points might be found in a pattern matrix_profile, matrix_profile_indices = stumpy.mstump(X, m=window_size) left_matrix_profile_index = matrix_profile[:, 2] right_matrix_profile_index = matrix_profile[:, 3] as you said, mstumpy only support 1-D data, however, what is the explanation of the results in mstumpy?
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or request
