Skip to content

Using DataFrame Inputs with MSTUMP/MSTUMPED#67

@seanlaw

Description

@seanlaw

@marcusau asked:

I have tried multi-dimensional array to mstump with stock prices and its technical indicators

#### step 2 : Feature creation df1=df.copy() df1['Close_pct']=np.log(df1['Close'] / df1['Close'].shift(1)).dropna() df1['STDDEV']= ta.STDDEV(df1['Close'], timeperiod=5, nbdev=1) ### Volume Indicator Functions df1['OBV']=ta.OBV(df1['Close'], df1['Volume']) df1['Chaikin AD'] = ta.AD(df1['High'], df1['Low'], df1['Close'], df1['Volume']) ### momentum Indicator macd, macdsignal, macdhist = ta.MACD(df1['Close'], fastperiod=12, slowperiod=26, signalperiod=9) df1['macdhist']=macdhist df1['RSI']= ta.RSI(df1['Close'], timeperiod=14) # Volatility Indicator Functions df1['NATR'] = ta.NATR(df1['High'], df1['Low'], df1['Close'], timeperiod=14) df1['TRANGE'] = ta.TRANGE(df1['High'], df1['Low'], df1['Close']) print(df1.tail()) print(list(set(df.columns) ^ set(df1.columns))) feature_cols=list(set(df.columns) ^ set(df1.columns)) df1=df1.loc[:,feature_cols].dropna() print(df1.head()) #Store these values in the NumPy array for using in our models later: f_x=() for f in feature_cols: f_x += (df1[f].values.reshape(-1,1),) X = np.concatenate(f_x,axis=1) X=X.T print(X.shape) >>>> (8, 2429) 

Screenshot 2019-08-25 at 6 55 35 PM

window_size = 10 # Approximately, how many data points might be found in a pattern matrix_profile, matrix_profile_indices = stumpy.mstump(X, m=window_size) left_matrix_profile_index = matrix_profile[:, 2] right_matrix_profile_index = matrix_profile[:, 3] 

as you said, mstumpy only support 1-D data, however, what is the explanation of the results in mstumpy?

Metadata

Metadata

Assignees

Labels

enhancementNew feature or request

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions